DOI QR코드

DOI QR Code

연산복잡도 감소를 위한 새로운 8-병렬 MDC FFT 프로세서

New Parallel MDC FFT Processor for Low Computation Complexity

  • Kim, Moon Gi (Department of Electrical and Computer Engineering, Ajou University) ;
  • Sunwoo, Myung Hoon (Department of Electrical and Computer Engineering, Ajou University)
  • 투고 : 2014.12.24
  • 심사 : 2015.02.26
  • 발행 : 2015.03.25

초록

본 논문에서는 고속 데이터 전송을 위한 OFDM 시스템에 적용 가능한 고속 FFT 프로세서를 제안하였다. 8개의 병렬 경로를 가지는 MDC 파이프라인 고속 FFT 프로세서를 제안한다. 제안하는 구조는 연산과 하드웨어의 최적화를 위해 radix-$2^6$ 알고리즘에 기반하고 있다. 하드웨어 복잡도를 감소시키기 위해서 상수 곱셈기와 교환기 구조를 제안하고 새로운 스케즐링 기법을 적용하였다. 제안하는 FFT 프로세서는 새로운 구조를 적용해 지연 소자와 연산 사이클의 증가 없이 복소 곱셈기 및 연산복잡도를 감소시킬 수 있다. 또한 최적화한 twiddle factor $W_{64}$ 상수 곱셈기는 기존 복소 booth 곱셈기에 비해 65%만의 하드웨어 복잡도를 보였다. 설계한 FFT 프로세서는 Verilog HDL로 모델링하여 IBM 90nm 공정으로 합성하였으며 $0.27mm^2$의 면적과 388MHz의 주파수에서 2.7 GSample/s를 보이고 있다.

This paper proposed the new eight-parallel MDC FFT processor using the eight-parallel MDC architecture and the efficient scheduling scheme. The proposed FFT processor supports the 256-point FFT based on the modified radix-$2^6$ FFT algorithm. The proposed scheduling scheme can reduce the number of complex multipliers from eight to six without increasing delay buffers and computation cycles. Moreover, the proposed FFT processor can be used in OFDM systems required high throughput and low hardware complexity. The proposed FFT processor has been designed and implemented with a 90nm CMOS technology. The experimental result shows that the area of the proposed FFT processor is $0.27mm^2$. Furthermore, the proposed eight-parallel MDC FFT processor can achieve the throughput rate up to 2.7 GSample/s at 388MHz.

키워드

참고문헌

  1. IEEE P802.11-T, ask Group AD, http://www.ieee802.org/11/
  2. S. J. Huang and S. G. Chen, "A high-throughput radix-16 FFT processor with parallel and normal input/output ordering for IEEE 802.15.3c systems," IEEE Trans. Circuits Syst. I, vol. 59, no. 8, pp. 1752-1765, Aug. 2012. https://doi.org/10.1109/TCSI.2011.2180430
  3. Fang-Li Yuan, Yi-Hsien Lin, Chih-Feng Wu, Muh-Tian Shiue and Chorng-Kuang Wang, "A 256-Point dataflow scheduling 2${\times}$2 MIMO FFT FFT/IFFT processor for ieee 802.16 WMAN," in Proc. IEEE ASSCC, pp.309-312, Nov. 2008.
  4. C. T. Lin, Y. C. Yu and L. D. Van, "Cost-effective triple-mode reconfigurable pipeline FFT/IFFT/2-D DCT processor," IEEE Trans. VLSI systems, vol. 16, no.8, pp. 1058-1071, Aug. 2008. https://doi.org/10.1109/TVLSI.2008.2000676
  5. M. Garrido, J. Grajal, M. Sanchez, and O. Gustafsson, "Pipelined radix-2k feedforward FFT architectures," IEEE Trans. VLSI Syst., vol. 21, no. 1, pp. 23-32, Jan. 2013. https://doi.org/10.1109/TVLSI.2011.2178275
  6. M. Ayinala and K.K. Parhi, "Parallel Pipelined FFT Architectures with Reduced Number of Delays," in Proc. ACM Great Lakes Symp. on VLSI, pp. 63-66, May 2012.
  7. T. Ahmed, M. Garrido, and O. Gustafsson, "A 512-point 8-parallel pipelined feedforward FFT for WPAN," in Proc. ASILOMAR, pp. 981-984, Nov. 2011.
  8. Y. Chen, Y.-W. Lin, Y.-C. Taso, and C.-Y. Lee, "A 2.4-Gsample/s DVFS FFT processor for MIMO OFDM communication systems," IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1260-1273, May 2008. https://doi.org/10.1109/JSSC.2008.920320
  9. T. Cho and H. Lee, "A High-Speed Low-Complexity Modified Radix-$2^5$ FFT Processor for High Rate WPAN Applications," IEEE Trans. VLSI systems, vol. 21, pp. 187-191, Jan. 2012.
  10. K. Yang, S. Tsai, and G. C. Chuang, "MDC FFT/IFFT processor with variable length for MIMO-OFDM systems," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 4, pp. 720-731, Mar. 2013. https://doi.org/10.1109/TVLSI.2012.2194315