DOI QR코드

DOI QR Code

Hermeneutics and Science Education : Focus on Implications for Conceptual Change Theory

해석학과 과학교육 : 개념변화이론에의 함의를 중심으로

  • Received : 2015.01.14
  • Accepted : 2015.02.17
  • Published : 2015.02.28

Abstract

Constructivism gave many implications to science education but at the same time it has brought confusion about its implication to the field of science education. Hermeneutics has possibilities of being able to reduce confusion as well as opening a new horizon. Hermeneutics seeks the meaning of 'real understanding' through the concepts of horizon, hermeneutical circle, and fusion of horizons. Both hermeneutics and constructivism have positive attitude to students' pre-understanding and accept contextualization of knowledge. Thus, they both can criticize traditional teaching method and propose an alternative. Moreover, hermeneutics approaches human understanding holistically with the concept of horizon, and pays attention to the circularity of the process of human understanding. As a result, hermeneutics can open a new horizon and give new discourse to science education and contribute to the development of research and practice of science education.

구성주의는 현재의 과학교육 발달에 많은 시사점을 주었지만, 동시에 교육 현장의 적용에 있어 여러 가지 혼란도 야기했다. 해석학은 이런 혼란을 줄여줄 수 있을 뿐만 아니라 과학 교육에 새로운 지평을 제공해 줄 수 있는 가능성을 지닌 철학이다. 해석학과 구성주의는 모두 학생의 선이해를 긍정하고, 지식의 맥락성을 인정한다는 점에서 공통점을 지니며, 이를 바탕으로 전통적인 교수법을 넘어서는 새로운 시사점을 제공해 줄 수 있다. 해석학은 이해란 무엇인가를 다루는 학문으로 지평의 개념을 통해 인간의 이해 양상을 총체적으로 파악하려고 하며, 이 개념으로부터 과학 교육에서의 학생의 이해에 대해서도 총체적으로 접근하는, 전체적인 맥락을 고려한 수업을 할 것을 제안한다. 또한 해석학은 이해의 과정이 부분과 전체, 익숙함과 낯섦 사이의 끊임없는 해석학적 순환의 과정에서 일어난다고 이해하고 있는데, 이를 통해 인간의 '이해 과정'에 있어서 간과하기 쉬운 순환성에 주목할 것과, 학생들이 끊임없이 자신들의 선이해를 재해석, 재이해 할 수 있도록 도와줄 것을 제안한다. 또한 수업 하나 하나를 구성하는데 있어서도 전체적인 틀 속에서 고려하는 것이 필요하다는 시사점을 제공해 준다. 마지막으로 해석학은 지평의 융합의 개념을 통해 인간이 이해에 도달한 모습을 표현하고 있는데, 이를 통해 학생의 이해의 과정을 '갈등'의 개념 보다는 '융합'의 개념으로 바라볼 것과, 수업의 목표를 학생 개인의 전인적인 변화에 둘 것을 제안한다. 이처럼 과학교육에 많은 새로운 시사점을 제공해 줄 수 있는 해석학이 앞으로 과학교육 분야에 새로운 지평과 담론을 제공하면서, 과학교육 연구와 실천의 발전에 기여할 수 있기를 기대한다.

Keywords

References

  1. Aronson, E., & Patnoe, S. (1997). The jigsaw classroom: building cooperation in the classroom (2nd ed.). New York: Longman.
  2. Bernstein, R. J. (1983). Beyond objectivism and relativism: Science, hermeneutics, and praxis: University of Pennsylvania press.
  3. Bevilacqua, F., & Giannetto, E. (1995). Hermeneutics and Science Education: The role of history of science. Science & Education, 4(2), 115-126. https://doi.org/10.1007/BF00486579
  4. Boudourides, M. A. (1998). Constructivism and education: A shopper's guide. Paper presented at the International Conference on the Teaching of Mathematics, Samos, Greece.
  5. Chang, H. (2004). Inventing temperature: Measurement and scientific progress: Oxford University Press.
  6. Cheong, E. (2006). Gadamer truth and method 2. A Journal of Philosophical Ideas, An extra number 7(20), 1-169.
  7. Cho, H., & Choi, K. (2002). Science Education: Constructivist Perspectives. Journal of the Korean Association for Science Education, 22(4), 820-836.
  8. Choi, M. (2005). Hermeneutics and Education : Research of sociology of curriculum. Seoul: Kyoyookbook.
  9. Choi, S. (2009). A Hermeneutical Understanding of Moral Education. Journal of the Elementary Moral Instruction, 30, 112-138.
  10. Clement, J., Brown, D. E., & Zietsman, A. (1989). Not all preconceptions are misconceptions: finding 'anchoring conceptions' for grounding instruction on students' intuitions. International Journal of Science Education, 11(5), 554-565. https://doi.org/10.1080/0950069890110507
  11. diSessa, A. A. (2002). Why "conceptual ecology" is a good idea Reconsidering conceptual change: Issues in theory and practice (pp. 28-60): Springer.
  12. Driver, R. (1981). Pupils' alternative frameworks in science. European Journal of Science Education, 3(1), 93-101. https://doi.org/10.1080/0140528810030109
  13. Driver, R. (1983). Pupil as scientist: McGraw-Hill International.
  14. Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing Scientific Knowledge in the Classroom. Educational Researcher, 23(7), 5-12. https://doi.org/10.3102/0013189X023002005
  15. Driver, R., & Oldham, V. (1986). A Constructivist Approach to Curriculum Development in Science. Studies in Science Education, 13(1), 105-122. https://doi.org/10.1080/03057268608559933
  16. Eger, M. (1992). Hermeneutics and science education: An introduction. Science & Education, 1(4), 337-348. https://doi.org/10.1007/BF00430961
  17. Eger, M. (1997). Achievements of the hermeneutic-phenomenological approach to natural science: A comparison with constructivist sociology. Man and World, 30(3), 343-367. https://doi.org/10.1023/A:1004215804045
  18. Gadamer, H. G. (1975). Truth and method (2nd ed.). New York: Continuum.
  19. Grondin, J. (1991). Einfuhrung in die philosophische Hermeneutik: Cambridge Univ Press.
  20. Ha, S., Lee, G., & Kalman, C. S. (2013a). Workshop on Friction: Understanding and Addressing Students' Difficulties in Learning Science through a Hermeneutical Perspective. Science & Education, 22(6), 1423-1441. https://doi.org/10.1007/s11191-012-9465-5
  21. Ha, S. (2013b). An Understanding of Students' Group Learning in Upper-level Mechanics Course: Based on a Hermeneutical Perspective. (Doctor's degree), Seoul National University.
  22. Han, H.-J., Lee, T., Ko, H., Lee, S.-K., Kim, E., Choe, S.-U., & Kim, C.-J. (2012). An Analysis of the Type of Rebuttal in Argumentation among Science-Gifted Student. Journal of the Korean Association for Science Education, 32(4), 717-728. https://doi.org/10.14697/jkase.2012.32.4.717
  23. Heidegger, M. (1962). Being and time (J. Macquarrie & E. Robinson, Trans.). New York: Harper & Row.
  24. Heisenberg, W. (1971). Der Teil und das Ganze: Gesprache im Umkreis der Atomphysik. Frankfurt: Buchergilde Gutenberg.
  25. Huh, H. (1987). Piaget's Ontogenetic Epistemology and Epigenesis, and its' Educational Psychological Implication. Journal of Educational Psychology, 1, 151-176.
  26. Hur, S. (1997). Reconceptualization of Educational Phenomenon. Seoul: Kyoyookbook.
  27. Johnson, D. W., & Johnson, R. T. (1999). Learning together and alone: Cooperative, competitive, and individualistic learning (5th ed.). Boston: Allyn and Bacon.
  28. Jung, W.-Y., Lee, G., Shin, H., Cha, H.-J., & Kim, C.-J. (2012). Role Formation by Interaction Function and Pattern for Group Discussion Activity using the case of Environmental Education Camp for Undergraduate Student. Journal of the Korean Association for Science Education, 32(4), 555-569. https://doi.org/10.14697/jkase.2012.32.4.555
  29. Kagan, S. (1994). Cooperative Learning. San Clemente, CA: Kagan Cooperative Learning.
  30. Kalman, C. (2011). Enhancing students' conceptual understanding by engaging science text with reflective writing as a hermeneutical circle. Science & Education, 20(2), 159-172. https://doi.org/10.1007/s11191-010-9298-z
  31. Kang, E., & Kim, J. (2012). Problem-Finding Process and Effect Factor by University Students in an Ill-Structured Problem Situation. Journal of the Korean Association for Science Education, 32(4), 570-585. https://doi.org/10.14697/jkase.2012.32.4.570
  32. Kang, S. (2010). Philosophy vs Philosophy. Seoul: Greenbee.
  33. Kim, I., Park, Y., Park, J., Song, J., & Choi, K. (2002). A general theory of physics education 2. Seoul: Bookshill.
  34. Kim, P., Park, S., Sim, S., You, B., Lim, C., Hur, S., & Hwang, H. (2000). Constructivism and curriculum education. Seoul: Hakjisa.
  35. Kwon, J., & Nam, J. (2013). A Study on the Change of the Beginning Science Teachers' Beliefs About a Lesson and Teaching Practice in Argument-Based Inquiry Using Science Writing. Journal of the Korean Association for Science Education, 33(7), 1329-1342. https://doi.org/10.14697/jkase.2013.33.7.1329
  36. Lee, G. (2007). Why Do Students Have Difficulties in Learning Physics?: Toward a Structural Analysis of Student Difficulty Via a Framework of Knowledge & Belief. New Physics: Sae Mulli, 54(4), 284-295.
  37. Lee, J. (2010). An Inquiry of Elementary Moral Instruction Based on Educational Hermeneutics. Journal of the Elementary Moral Instruction, 32, 255-282.
  38. Matthews, M. R. (1994). Science teaching : the role of history and philosophy of science. New York: Routledge.
  39. Minstrell, J. (1982). Explaining the "at rest" condition of an object. The Physics Teacher, 20(1), 10-14. https://doi.org/10.1119/1.2340924
  40. Nam, J., Kwak, K., Jang, K., & Hand, B. (2008). The implementation of Argumentation Using Science Writing Heuristic (SWH) in Middle School Science. Journal of the Korean Association for Science Education, 28(8), 922-936.
  41. Palmer, R. E. (1969). Hermeneutics : interpretation theory in Schleiermacher, Dilthey, Heidegger, and Gadamer. Evanston: Northwestern University Press.
  42. Park, J.-Y., & Kim, H.-B. (2012). Theoretical Considerations on Analytical Framework Design for the Interactions between Participants in Group Argumentation on Socio-Scientific Issues. Journal of the Korean Association for Science Education, 32(4), 604-624. https://doi.org/10.14697/jkase.2012.32.4.604
  43. Park, S. (1993). Hermeneutics. Philosophy & Reality, 17, 123-142.
  44. Slavin, R. E. (1980). Cooperative Learning. Review of Educational Research, 50(2), 315-342. https://doi.org/10.3102/00346543050002315
  45. Son, S. (2001). Educational Hermeneutics. Seoul: Kyoyookbook.
  46. Von Glasersfeld, E. (1984). An introduction to radical constructivism. The invented reality, 17-40.
  47. Vygotsky, L. S. (1978). Mind in Society: The Development of Higher Psychological Processes: Harvard University Press.
  48. Vygotsky, L. S., Carton, A. S., & Rieber, R. W. (1987). The collected works of L.S. Vygotsky. Volume 1 (Including the Volume Thinking and Speech). New York: Plenum Press.
  49. Wallace, J., & Louden, W. (2005). Dilemmas of science teaching: Perspectives on problems of practice: Routledge.
  50. Warnke, G. (1987). Gadamer : hermeneutics, tradition and reason. Cambridge: Polity.
  51. Yager, R. E. (1991). The constructivist learning model. Science Teacher, 58(6), 52-57.
  52. Yoon, B. (2007). Das hermeneutische Erbe Heideggers und die "philosophische Hermeneutik" bei Gadamer. Journal of the Ontology Research, 15, 471-502.
  53. You, J., & Noh, T. (2012). An Analysis of Verbal Interaction among Science-Gifted Students in Inquiry Learning Based on Analogical Experimental Design Strategy Emphasizing Understanding and Checking Stages. Journal of the Korean Association for Science Education, 32(4), 671-685. https://doi.org/10.14697/jkase.2012.32.4.671

Cited by

  1. 공통맥락 형성의 관점에서 살펴본 마찰력에 대한 소집단 토론의 특징 vol.37, pp.2, 2015, https://doi.org/10.14697/jkase.2017.37.2.0301
  2. 프로그래밍 기반 수업이 과학교사의 TPACK에 대한 인식에 미치는 영향 vol.37, pp.4, 2015, https://doi.org/10.14697/jkase.2017.37.4.693
  3. 구르는 물체에 작용하는 마찰력에 대한 과학 영재학교 학생들의 이해의 특징 vol.42, pp.2, 2015, https://doi.org/10.21796/jse.2018.42.2.120
  4. Challenges of designing and carrying out laboratory experiments about Newton's second law : The case of Korean gifted students vol.29, pp.5, 2020, https://doi.org/10.1007/s11191-020-00155-1