DOI QR코드

DOI QR Code

대전지역 대기 중 PM2.5의 유기탄소와 원소탄소의 계절별 특성 연구

Seasonal Characteristics of Organic Carbon and Elemental Carbon in PM2.5 in Daejeon

  • 김효선 (충남대학교 환경공학과) ;
  • 정진상 (한국표준과학연구원 대기환경표준센터) ;
  • 이진홍 (충남대학교 환경공학과) ;
  • 이상일 (한국표준과학연구원 대기환경표준센터)
  • Kim, Hyosun (Department of Environmental Engineering, Chungnam National University) ;
  • Jung, Jinsang (Center for Gas Analysis, Korea Research Institute of Standards and Science) ;
  • Lee, Jinhong (Department of Environmental Engineering, Chungnam National University) ;
  • Lee, Sangil (Center for Gas Analysis, Korea Research Institute of Standards and Science)
  • 투고 : 2015.02.02
  • 심사 : 2015.02.13
  • 발행 : 2015.02.28

초록

To investigate the seasonal variations of carbonaceous aerosol in Daejeon, OC (organic carbon), EC (elemental carbon) and WSOC (water soluble organic carbon) in $PM_{2.5}$ samples collected from March 2012 to February 2013 were analyzed. $PM_{2.5}$ concentrations were estimated by the sum of organic matter ($1.6{\times}OC$), EC, water-soluble ions ($Na^+$, $NH_4{^{+}}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, $SO_4{^{2-}}$, $NO_3{^{-}}$). The estimated $PM_{2.5}$ concentrations were relatively higher in winter ($29.50{\pm}12.04{\mu}g/m^3$) than those in summer ($13.72{\pm}6.92{\mu}g/m^3$). Carbonaceous aerosol ($1.6{\times}OC+EC$) was a significant portion (34~47%) of $PM_{2.5}$ in all season. The seasonally averaged OC and WSOC concentrations were relatively higher in winter ($6.57{\times}3.48{\mu}gC/m^3$ and $4.07{\pm}2.53{\mu}gC/m^3$ respectively), than those in summer ($3.07{\pm}0.8{\mu}gC/m^3$, $1.77{\pm}0.68{\mu}gC/m^3$, respectively). OC was correlated well with WSOC in all season, indicating that they have similar emission sources or formation processes. In summer, both OC and WSOC were weakly correlated with EC and also poorly correlated with a well-known biomass burning tracer, levoglucosan, while WSOC is highly correlated with SOC (secondary organic carbon) and $O_3$. The results suggest that carbonaceous aerosol in summer was highly influenced by secondary formation rather than primary emissions. In contrast, both OC and WSOC in winter were strongly correlated with EC and levoglucosan, indicating that carbonaceous aerosol in winter was closely related to primary source such as biomass burning. The contribution of biomass burning to $PM_{2.5}$ OC and EC, which was estimated using the levoglucosan to OC and EC ratios of potential biomass burning sources, was about $70{\pm}15%$ and $31{\pm}10%$, respectively, in winter. Results from this study clearly show that $PM_{2.5}$ OC has seasonally different chemical characteristics and origins.

키워드

참고문헌

  1. Aggarwal, S.G. and K. Kawamura (2009) Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction, Atmos. Environ., 43, 2532-2540. https://doi.org/10.1016/j.atmosenv.2009.02.032
  2. Andreae, M.O. and P. Marelet (2001), Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15(4), 955-966. https://doi.org/10.1029/2000GB001382
  3. Andrew Gray, H. and G.R. Cass (1998), Source contributions to atmospheric fine carbon particle concentrations. Atmos. Environ., 32(22), 3805-3825. https://doi.org/10.1016/S1352-2310(97)00446-9
  4. Brich, M.E. and R.A. Cary (1996), Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust, Aerosol Sci. Technol., 25(3), 221-241. https://doi.org/10.1080/02786829608965393
  5. Cao, J.J., F. Wu, J.C. Chow, S.C. Lee, Y. Li, S.W. Chen, Z.S. An, K.K. Fung, J.G. Watson, C.S. Zhu, and S.X. Liu (2005) Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China, Atmos. Chem. Phys., 5(11), 3127-3137. https://doi.org/10.5194/acp-5-3127-2005
  6. Castro, L.M., C.A. Pio, R.M. Harrison, and D.J.T. Smith (1999) Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations, Atmos. Environ., 33, 2771-2781. https://doi.org/10.1016/S1352-2310(98)00331-8
  7. Cheng, Y., G. Engling, K.-B. He, F.-L. Duan, Y.-L. Ma, J.-M. Liu, M. Zheng, and R.J. Weber (2013) Biomass burning contribution to Beijing aerosol, Atmos. Chem. Phys., 13, 7765-7781. https://doi.org/10.5194/acp-13-7765-2013
  8. Chow, J.C., J.G. Watson, Z. Lu, D.H. Lowenthal, C.A. Frazier, P.A. Solomon, and K. Magliano (1996) Descriptive analysis of $PM_{2.5}$ and $PM_{10}$ at regionally representative locations during SJVAQS/AUSPEX, Atmos. Environ., 30(12), 2079-2112. https://doi.org/10.1016/1352-2310(95)00402-5
  9. Du, Z., K. He, Y. Cheng, F. Duan, Y. Ma, J. Liu, M. Zhang, and R. Weber (2014) A yearlong study of watersoluble organic carbon in Beijing I: Sources and its primary vs secondary nature, Atmos. Environ., 92, 514-521. https://doi.org/10.1016/j.atmosenv.2014.04.060
  10. Duan, F., X. Liu, T. Yu, and H. Cachier (2004) Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing, Atmos. Environ., 38(9), 1275-1282. https://doi.org/10.1016/j.atmosenv.2003.11.037
  11. Facchini, M.C., M. Mircea, S. Fuzzi, and R.J. Charlson (1999) Cloud albedo enhancement by surface-active organic solutes in growing droplets, Nature, 401(6750), 257-259. https://doi.org/10.1038/45758
  12. Fine, P.M., G.R. Cass, and B.R. Simoneit (2001). Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States, Environ. Sci. Technol., 35(13), 2665-2675. https://doi.org/10.1021/es001466k
  13. Fine, P.M., G.R. Cass, and B.R. Simoneit (2002). Chemical characterization of fine particle emissions from the fireplace combustion of woods grown in the southern United States, Environ. Sci. Technol., 36(7), 1442-1451. https://doi.org/10.1021/es0108988
  14. Fine, P.M., G.R. Cass, and B.R. Simoneit (2004). Chemical characterization of fine particle emissions from the wood stove combustion of prevalent United States tree species, Environ. Eng. Sci., 21(6), 705-721. https://doi.org/10.1089/ees.2004.21.705
  15. Han, Y.J., T.S. Kim, and H. Kim (2008) Ionic constituents and source analysis of $PM_{2.5}$ in three Korean cities, Atmos. Environ., 42, 4735-4746. https://doi.org/10.1016/j.atmosenv.2008.01.047
  16. Ho, K.F., S.C. Lee, C.K. Chan, J.C. Yu, J.C. Chow, and X.H. Yao (2003) Characterization of chemical species in $PM_{2.5}$ and $PM_{10}$ aerosols in Hong Kong, Atmos. Environ., 37(1), 31-39. https://doi.org/10.1016/S1352-2310(02)00804-X
  17. Huang, X.F. and J.Z. Yu (2007) Is vehicle exhuast a significant promary source of oxalic acid in ambient aerosols?, Geophys. Res. lett., 34, L02808, doi:10.1029/2006GL028457.
  18. Huang, X.F., J.Z. Yu, L.Y. He, and Z. Yuan (2006) Water soluble organic carbon and oxalate in aerosols at a coastal urban site in China: Size distribution characteristics, sources, and formation mechanisms, J. Geophys. Res., 111, D22212, doi:10.1029/2006JD007408.
  19. Iinuma, Y., G. Engling, H. Puxbaum, and H. Herrmann (2009) A highly resolved anion-exchange chromatographic method for determination of saccharidic tracer for biomass combustion and promary bio-particles in atmospheric aerosol, Atmos. Environ., 43, 1352-2310.
  20. IPCC (2007) Climate Change 2007 : the physical science basis. Contribution of Working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK and New York, USA.
  21. Jacob, D.J. and D.A. Winner (2009) Effect of climate change on air quality, Atmos. Environ., 43(1), 51-63. https://doi.org/10.1016/j.atmosenv.2008.09.051
  22. Jaffrezo, J.-L., G. Aymoz, C. Delaval, and J. Cozic (2005) Seasonal variations of the water soluble organic carbon mass fraction of aerosol in two valleys of the french Alps, Atmos. Chem. Phys., 5, 2809-2821. https://doi.org/10.5194/acp-5-2809-2005
  23. Jung, J., S. Lee, H. Kim, D. Kim, H. Lee, and S. Oh (2014) Quantitative determination of the biomass-burning contribution to atmospheric carbonaceous aerosols in Daejeon, Korea, during the rice-harvest period, Atmos. Environ., 89, 642-650. https://doi.org/10.1016/j.atmosenv.2014.03.010
  24. Kaufman, Y., D. Tanre, and O. Boucher (2002) A Satellite View of Aerosols in the Climate System, Nature, 219, 215-223.
  25. Kim, S.Y., M.H. Chung, B.S. Son, W.H. Yang, and K.H. Choi (2005) A study on airborne particulate matter of a local area in Seoul, Kor. J. Env. Hlth, 31(4), 301-308. (in Korean with English abstract)
  26. Kondo, Y., Y. Miyazaki, N. Takegawa, T. Miyakawa, R.J. Weber, J.L. Jimenez, Q. Zhang, and D.R. Worsnop (2007) Oxygenated and water soluble organic aerosols in Tokyo, J. Geophys. Res., 112, D01203, doi:10.1029/2006JD007056.
  27. Laden, F., J. Schwartz, F.E. Speizer, and D.W. Dockery (2006) Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study, Am. J. Respir. Crit. Care Med., 173(6), 667-672. https://doi.org/10.1164/rccm.200503-443OC
  28. Lee, H.W., T.J. Lee, and D.S. Kim (2009) Identifying ambient $PM_{2.5}$ source and estimating their contributions by using PMF : separation of gasoline and diesel automobils sources by analyzing ECs and OCs, J. KOSAE, 25(1), 75-89. (in Korean with English abstract)
  29. Lohmann, U. and J. Feichter (2005) Global indirect aerosol effects: a review. Atmos. Chem. Phys., 5(3), 715-737. https://doi.org/10.5194/acp-5-715-2005
  30. Menon, S., J. Hansen, L. Nazarenko, and Y. Luo (2002) Climate effects of black carbon aerosols in China and India, Science, 297(5590), 2250-2253. https://doi.org/10.1126/science.1075159
  31. Miyazaki, Y., Y. Kondo, N. Takegawa, Y. Komazaki, M. Fukuda, K. Kawamura, M. Mochida, and R.J. Weber (2006) Time resolved measurements of water soluble organic carbon in Tokyo, J. Geophys. Res., 111, D23206, doi:10.1029/2006JD007125.
  32. Moon, K.J., S.M. Park, I.H. Song, S.K. Jang, J.C. Kim, and S.J. Lee (2011) Chemical characteristics and source apportionment of $PM_{2.5}$ in seoul Metropolitan area in 2010, J. KOSAE, 27(6), 711-722. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2011.27.6.711
  33. Park, S.S. and S.Y. Cho (2011), Tracking sources and behaviors of water-soluble organic carbon in fine particulate matter measured at an urban site in Korea, Atmos. Environ., 45, 60-72. https://doi.org/10.1016/j.atmosenv.2010.09.045
  34. Pio, C.A., M. Legrand, T. Oliveira, J. Afonso, C. Santos, A. Caseiro, P. Fialho, F. Barata, H. Puxbaum, A. Sanchez-Ochoa, A. Kasper-Giebl, A. Gelencser, S. Preunkert, and M. Schock (2007) Climatology of aerosol composition (organic versus inorganic) at nonurban sites on a west-east transect across Europe, J. Geophys. Res., 112, D23S02, doi:10.1029/2006JD008038.
  35. Pope, C.A., J.B. Muhlestein, H.T. May, D.G. Renlund, J.L. Anderson, and B.D. Horne (2006). Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution, Circulation, 114(23), 2443-2448. https://doi.org/10.1161/CIRCULATIONAHA.106.636977
  36. Ramanathan, V. and G. Carmichael (2008). Global and regional climate changes due to black carbon, Nature Geoscience, 1(4), 221-227. https://doi.org/10.1038/ngeo156
  37. Ruellan, S. and H. Cachier (2001) Characterisation of fresh particulate vehicular exhausts near a Paris high flow road, Atmos. Environ., 35(2), 453-468. https://doi.org/10.1016/S1352-2310(00)00110-2
  38. Saxena, P. and L.H. Hilemann (1996) Water-soluble oranics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57-109. https://doi.org/10.1007/BF00053823
  39. Schauer, J.J., M.J. Kleeman, G.R. Cass, and B.R. Simoneit (1999) Measurement of emissions from air pollution sources. 1. $C_1$ through $C_{29}$ organic compounds from meat charbroiling, Environ. Sci. Technol., 33(10), 1566-1577. https://doi.org/10.1021/es980076j
  40. Schmidl, C., H. Bauer, A. Dattler, R. Hitzenberger, G. Weissenboeck, I.L. Marr, and H. Puxbaum (2008b). Chemical characterisation of particle emissions from burning leaves, Atmos. Environ., 42(40), 9070-9079. https://doi.org/10.1016/j.atmosenv.2008.09.010
  41. Schmidl, C., I.L. Marr, A. Caseiro, P. Kotianova, A. Berner, H. Bauer, A. Kasper-Giebl, and H. Puxbaum (2008a). Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions, Atmos. Environ., 42(1), 126-141. https://doi.org/10.1016/j.atmosenv.2007.09.028
  42. Seinfeld, J.H. and S.N. Pandis (2012) Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons, USA, 628-690.
  43. Sheesley, R.J., J.J. Schauer, Z. Chowdhury, G.R. Cass, and B.R. Simoneit (2003). Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia, J. Geophys. Res., 108(D9), 4285, doi:10.1029/2002JD002981.
  44. Simoneit, B.R. (2002) Biomass burning-a review of organic tracers for smoke from incomplete combustion, Applied Geochemistry, 17(3), 129-162. https://doi.org/10.1016/S0883-2927(01)00061-0
  45. Slaughter, J.C., E. Kim, L. Sheppard, J.H. Sullivan, T.V. Larson, and C. Claiborn (2004) Association between particulate matter and emergency room visits, hospital admissions and mortality in Spokane, Washington, J. Expo. Sci. Environ. Epidemiol., 15(2), 153-159.
  46. Streets, D.G., T.C. Bond, G.R. Carmichael, S.D. Fernandes, Q. Fu, D. He, Z. Klimont, S.M. Nelson, N.Y. Tsai, M.Q. Wang, J.H. Woo, and K.F. Yarber (2003a) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J. Geophys. Res., 108(D21), 8809, doi:10.1029/2002JD003093.
  47. Streets, D.G., K.F. Yarber, J.H. Woo and G.R. Carmichael (2003b) Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions, Global Biogeochem. Cycles 17(4).
  48. Sullivan, A.P., A.S. Holden, L.A. Patterson, G.R. McMeeking, S.M. Kreidenweis, W.C. Malm, W.M. Hao, C.E. Wold, and J.L. Collett Jr (2008) A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient $PM_{2.5}$ organic carbon, J. Geophys. Res., 113, D22302, doi:10.1029/2008JD010216.
  49. Sullivan, A.P., R.J. Weber, A.L. Clements, J.R. Tuner, M.S. Bae, and J.J. Schauer (2004) A method for on-line measurement of water-soluble organic carbon in ambient aerosol particles: Results from an urban site, Geophys. Res. Lett., 31, L13105, doi:10.1029/2004GL019681.
  50. Tobias, H.J., D.E. Beving, P.J. Ziemann, H. Sakurai, M. Zuk, P.H. McMurry, D. Zarling, R. Waytulonis, and D.B. Kittelson (2001) Chemical analysis of diesel engine nanoparticles using a nano-DMA/thermal desorption particle beam mass spectrometer, Environ. Sci. Technol., 35(11), 2233-2243. https://doi.org/10.1021/es0016654
  51. Turpin, B.J., P. Saxena, and E. Andrews (2000) Measuring and simulating particulate organics in the atmosphere: problems and prospects, Atmos. Environ., 34(18), 2983-3013. https://doi.org/10.1016/S1352-2310(99)00501-4
  52. Turpin, B.J. and H.J. Lim (2001) Species contributions to $PM_{2.5}$ mass concentrations : Revisiting common assumptions for estimating organic mass, Aerosol Sci. Technol., 35, 602-610. https://doi.org/10.1080/02786820119445
  53. U.S. EPA (U.S. Enviromental Protection agency) (2009), Integrated science assessment for particulate matter, EPA/600/R-08/139F, December.
  54. Weber, R.J., A.P. Sullivan, R.E. Peltier, A. Russell, B. Yan, M. Zheng, J. de Gouw, C. Warneke, C. Brock, J.S. Holloway, E.L. Atlas, and E. Edgerton (2007) A study of secondary organic aerosol formation in the anthropogenic influenced southeastern United States, J. Geophys. Res., 112, D13302, doi:10.1029/2007JD008408.
  55. Wonaschutz, A., S.P. Hersey, A. Sorooshian, J.S. Craven, A.R. Metcalf, R.C. Flagan, and J.H. Seinfeld (2011). Impact of a large wildfire on water-soluble organic aerosol in a major urban area: the 2009 Station Fire in Los Angeles County, Atmos. Chem. Phys., 11 (16), 8257-8270. https://doi.org/10.5194/acp-11-8257-2011
  56. Yang, H., J.Z. Yu, S.S.H. Ho, J. Xu, W.S. Wu, C.H. Wan, X. Wang, X. Wang, and L. Wang (2005) The chemical composition of inorganic and carbonaceous materials in $PM_{2.5}$ in Nanjing, China, Atmos. Environ., 39(20), 3735-3749. https://doi.org/10.1016/j.atmosenv.2005.03.010
  57. Zhang, X., A. Hecobian, M. Zheng, N.H. Frank, and R.J. Weber (2010) Biomass burning impact on $PM_{2.5}$ over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis, Atmos. Chem. Phys., 10(14), 6839-6853. https://doi.org/10.5194/acp-10-6839-2010

피인용 문헌

  1. Investigation of PM2.5 Pollution Episodes in Gwangju vol.31, pp.3, 2015, https://doi.org/10.5572/KOSAE.2015.31.3.269
  2. Characteristics of Particulate Carbon in the Ambient Air in the Korean Peninsula vol.31, pp.4, 2015, https://doi.org/10.5572/KOSAE.2015.31.4.330
  3. Concentrations and Characteristics of Carbonaceous Compounds in PM10 over Seoul: Measurement between 2006 and 2007 vol.31, pp.4, 2015, https://doi.org/10.5572/KOSAE.2015.31.4.345
  4. Comparison of OC and EC Measurement Results Determined by Thermal-optical Analysis Protocols vol.31, pp.5, 2015, https://doi.org/10.5572/KOSAE.2015.31.5.449
  5. Comparison of PM2.5 Concentrations by Measurement Method vol.33, pp.5, 2017, https://doi.org/10.5572/KOSAE.2017.33.5.515
  6. PM2.5 Concentrations and Chemical Compositions in Jeonju from 2017 to 2018 vol.34, pp.6, 2018, https://doi.org/10.5572/KOSAE.2018.34.6.876