참고문헌
- Akpa, E., Jacques, P., Wathelet, B., Paquot, M., Fuchs, R., Budzikiewicz, H. and Thonart, P. 2001. Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl. Biochem. Biotechnol. 91:551-561.
- Andreu, D., Merrifield, R., Steiner, H. and Boman, H. 1983. Solid-phase synthesis of cecropin A and related peptides. Proc. Natl. Acad. Sci. U.S.A. 80:6475-6479. https://doi.org/10.1073/pnas.80.21.6475
- Arellano, M., Duran, A. and Perez, P. 1996. Rho 1 GTPase activates the (1-3) beta-D-glucan synthase and is involved in Schizosaccharomyces pombe morphogenesis. Eur. Mol. Biol. Organ. J. 15:4584.
- Asaka, O. and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081-4085.
- Bassarello, C., Lazzaroni, S., Bifulco, G., Cantore, P. L., Iacobellis, N. S., Riccio, R., Gomez-Paloma, L. and Evidente, A. 2004. Tolaasins A-E, five new lipodepsipeptides produced by Pseudomonas tolaasii. J. Nat. Prod. 67:811-816. https://doi.org/10.1021/np0303557
- Bockus, A. T., McEwen, C. M. and Lokey, R. S. 2013. Form and function in cyclic peptide natural products: a pharmacokinetic perspective. Curr. Top. Med. Chem. 13:821-836. https://doi.org/10.2174/1568026611313070005
- Boger, D. L., Keim, H., Oberhauser, B., Schreiner, E. P. and Foster, C. A. 1999. Total synthesis of HUN-7293. J. Am. Chem. Soc. 121:6197-6205. https://doi.org/10.1021/ja990918u
- Bulawa, C. E. 1993. Genetics and molecular biology of chitin synthesis in fungi. Annu. Rev. Microbiol. 47: 505-534. https://doi.org/10.1146/annurev.mi.47.100193.002445
- Burr, T., Matteson, M., Smith, C., Corral-Garcia, M. and Huang, T.-C. 1996. Effectiveness of bacteria and yeasts from apple orchards as biological control agents of apple scab. Biol. Control 6:151-157. https://doi.org/10.1006/bcon.1996.0019
- De Lucca, A. J. and Walsh, T. J. 1999. Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob. Agents Chemother. 43:1-11.
- de Souza, J. T., de Boer, M., de Waard, P., van Beek, T. A. and Raaijmakers, J. M. 2003. Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl. Environ. Microbiol. 69:7161-7172. https://doi.org/10.1128/AEM.69.12.7161-7172.2003
- Debono, M. and Gordee, R. S. 1994. Antibiotics that inhibit fungal cell wall development. Annu. Rev. Microbiol. 48:471-497. https://doi.org/10.1146/annurev.mi.48.100194.002351
- Diederich, F., Stang, P. J. and Tykwinski, R. R. 2008. Modern supramolecular chemistry: strategies for macrocycle synthesis. John Wiley & Sons.
- Edman, P. 1959. Chemistry of amino acids and peptides. Annu. Rev. Biochem. 28:69-96. https://doi.org/10.1146/annurev.bi.28.070159.000441
- Edwards, S. and Seddon, B. 2001. Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. J. Appl. Microbiol. 91:652-659. https://doi.org/10.1046/j.1365-2672.2001.01430.x
- Georgopapadakou, N. 1992. Emerging Targets in Antibacterial and Antifungal Chemotherapy. Champman and Hall, London and New York, pp. 476-494.
- Georgopapadakou, N. H. and Tkacz, J. S. 1995. The fungal cell wall as a drug target. Trends Microbiol. 3:98-104. https://doi.org/10.1016/S0966-842X(00)88890-3
- Gooday, G. 1977. Biosynthesis of the Fungal Wall-Mechanisms and Implications The First Fleming Lecture. J. Gen. Microbiol. 99:1-11. https://doi.org/10.1099/00221287-99-1-1
- Gozalbo, D., Elorza, M. V., Sanjuan, R., Marcilla, A., Valentin, E. and Sentandreu, R. 1993. Critical steps in fungal cell wall synthesis: strategies for their inhibition. Pharmacol. Ther. 60:337-345. https://doi.org/10.1016/0163-7258(93)90015-6
- Grgurina, I., Bensaci, M., Pocsfalvi, G., Mannina, L., Cruciani, O., Fiore, A., Fogliano, V., Sorensen, K. N. and Takemoto, J. Y. 2005. Novel cyclic lipodepsipeptide from Pseudomonas syringae pv. lachrymans strain 508 and syringopeptin antimicrobial activities. Antimicrob. Agents Chemother. 49:5037-5045. https://doi.org/10.1128/AAC.49.12.5037-5045.2005
- Gueldner, R. C., Reilly, C. C., Pusey, P. L., Costello, C. E., Arrendale, R. F., Cox, R. H., Himmelsbach, D. S., Crumley, F. G. and Cutler, H. G. 1988. Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. J. Agric. Food Chem. 36:366-370. https://doi.org/10.1021/jf00080a031
- Han, J. H., Hwang, I. C., Cho, S. H., Jang, C., Kim, N. G., Yu, S. H., Yu, Y. M. and Kim, S. B. 2008. Description of Streptomyces neopeptinius sp. nov., an actinobacterium with broad spectrum antifungal activities. J. Microbiol. 46:295-299. https://doi.org/10.1007/s12275-008-0011-8
-
Hartland, R., Emerson, G. and Sullivan, P. 1991. A secreted
${\beta}$ -glucan-branching enzyme from Candida albicans. Proc. R. Soc. London, B 246:155-160. https://doi.org/10.1098/rspb.1991.0138 - Heins, S. D., Jimenez, D. R., Manker, D. C., Marrone, P. G., McCoy, R. J. and Orjala, J. E. 2000. Strain of bacillus for controlling plant diseases and corn rootworm. US Patent 6060051 A.
- Heisey, R. M., Huang, J., Mishra, S. K., Keller, J. E., Miller, J. R., Putnam, A. R. and D'Silva, T. D. 1988. Production of valinomycin, an insecticidal antibiotic, by Streptomyces griseus var. flexipertum var. nov. J. Agric. Food Chem. 36:1283-1286. https://doi.org/10.1021/jf00084a039
- Horton, D. A., Bourne, G. T. and Smythe, M. L. 2002. Exploring privileged structures: the combinatorial synthesis of cyclic peptides. J. Comput.-Aided Mol. Des. 16:415-431. https://doi.org/10.1023/A:1020863921840
- Hur, G. H., Vickery, C. R. and Burkart, M. D. 2012. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat. Prod. Rep. 29:1074-1098. https://doi.org/10.1039/c2np20025b
- Ikai, K., Shiomi, K., Takesako, K., Mizutani, S., Yamamoto, J., Ogawa, Y., Ueno, M. and Kato, I. 1991a. Structures of aureobasidins B to R. J. Antibiot. 44:1187-1198. https://doi.org/10.7164/antibiotics.44.1187
- Ikai, K., Takesako, K., Shiomi, K., Moriguchi, M., Umeda, Y., Yamamoto, J., Kato, I. and Naganawa, H. 1991b. Structure of aureobasidin A. J. Antibiot. 44:925-933. https://doi.org/10.7164/antibiotics.44.925
- Ishidoh, K.-I., Kinoshita, H., Igarashi, Y., Ihara, F. and Nihira, T. 2014. Cyclic lipodepsipeptides verlamelin A and B, isolated from entomopathogenic fungus Lecanicillium sp. J. Antibiot. 67:1-5. https://doi.org/10.1038/ja.2013.127
- Isono, K. and Suzuki, S. 1979. Polyoxins-pyrimidine nucleoside peptide antibiotics inhibiting fungal cell-wall biosynthesis. Heterocycles 13:333-351. https://doi.org/10.3987/S-1979-01-0333
- Joo, S. H. 2012. Cyclic Peptides as Therapeutic Agents and Biochemical Tools. Biomol. Ther. 20:19. https://doi.org/10.4062/biomolther.2012.20.1.019
- Kajimura, Y. and Kaneda, M. 1997. Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J. Antibiot. 50:220-228. https://doi.org/10.7164/antibiotics.50.220
- Kharbanda, P. D., Coleman, R. N., Beatty, P. H., Jensen, S. E., Tewari, J. P. and Yang, J. 2003. Paenibacillus polymyxa strain ATCC 202127 for Biocontrol of Bacteria and Fungi. US Patent 6602500 B1.
- Kim, J.-C., Choi, G. J., Kim, H.-J., Kim, H. T., Ahn, J. W. and Cho, K. Y. 2002. Verlamelin, an antifungal compound produced by a mycoparasite, Acremonium strictum. Plant Pathol. J. 18:102-105. https://doi.org/10.5423/PPJ.2002.18.2.102
- Kim, P. I., Ryu, J., Kim, Y. H. and Chi, Y.-T. 2010. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 20:138-145.
- Kim, S.-K., Ubukata, M. and Isono, K. 2003. N-Acetylglycine side chain is critical for the antimicrobial activity of xanthostatin. J. Microbiol. Biotechnol. 13:998-1000.
- Kim, Y. S., Kim, H. M., Chang, C., Hwang, I. C., Oh, H., Ahn, J. S., Kim, K. D., Hwang, B. K. and Kim, B. S. 2007. Biological evaluation of neopeptins isolated from a Streptomyces strain. Pest Manage. Sci. 63:1208-1214. https://doi.org/10.1002/ps.1450
- Lavermicocca, P., Sante Iacobellis, N., Simmaco, M. and Graniti, A. 1997. Biological properties and spectrum of activity of Pseudomonas syringae pv. syringae toxins. Physiol. Mol. Plant Pathol. 50:129-140. https://doi.org/10.1006/pmpp.1996.0078
- Lebbadi, M., Galvez, A., Maqueda, M., Martinez-Bueno, M. and Valdivia, E. 1994. Fungicin M4: a narrow spectrum peptide antibiotic from Bacillus licheniformis M-4. J. Appl. Microbiol. 77:49-53.
- Leclere, V., Bechet, M., Adam, A., Guez, J.-S., Wathelet, B., Ongena, M., Thonart, P., Gancel, F., Chollet-Imbert, M. and Jacques, P. 2005. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl. Environ. Microbiol. 71:4577-4584. https://doi.org/10.1128/AEM.71.8.4577-4584.2005
- Lee, C.-h., Kim, S., Hyun, B., Suh, J., Yon, C., Kim, C. and Lim, Y. 1994. Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. I. Taxonomy, production, isolation and biological activity. J. Antibiot. 47:1402-1405. https://doi.org/10.7164/antibiotics.47.1402
- Lee, S. H., Cho, Y. E., Park, S.-H., Balaraju, K., Park, J. W., Lee, S. W. and Park, K. 2013. An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica 41:49-58. https://doi.org/10.1007/s12600-012-0263-z
- Leenders, F., Stein, T. H., Kablitz, B., Franke, P. and Vater, J. 1999. Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption/ionization mass spectrometry of intact cells. Rapid Commun. Mass Spectrom. 13:943-949. https://doi.org/10.1002/(SICI)1097-0231(19990530)13:10<943::AID-RCM591>3.0.CO;2-0
- Lim, T. H., Kwon, S. Y., Seo, H. W., Min, B. S. and Lim, C. H. 2007. Antifungal activity of valinomycin, a cyclodepsipeptide from Streptomyces padanus TH-04. Nat. Prod. Sci. 13:144-147.
- Lim, Y., Suh, J., Kim, S., Hyun, B., Kim, C. and Lee, C.-H. 1994. Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. II. Physico-chemical properties and structure elucidation. J. Antibiot. 47:1406. https://doi.org/10.7164/antibiotics.47.1406
- Liu, X., Wang, J., Gou, P., Mao, C., Zhu, Z.-R. and Li, H. 2007. In vitro inhibition of postharvest pathogens of fruit and control of gray mold of strawberry and green mold of citrus by aureobasidin A. Int. J. Food Microbiol. 119:223-229. https://doi.org/10.1016/j.ijfoodmicro.2007.07.054
- Mhammedi, A., Peypoux, F., Besson, F. and Michel, G. 1982. Bacillomycin F, a new antibiotic of iturin group: isolation and characterization. J. Antibiot. 35:306. https://doi.org/10.7164/antibiotics.35.306
- Mizuhara, N., Kuroda, M., Ogita, A., Tanaka, T., Usuki, Y. and Fujita, K.-I. 2011. Antifungal thiopeptide cyclothiazomycin B1 exhibits growth inhibition accompanying morphological changes via binding to fungal cell wall chitin. Bioorg. Med. Chem. 19:5300-5310. https://doi.org/10.1016/j.bmc.2011.08.010
- Monroc, S., Badosa, E., Besalu, E., Planas, M., Bardaji, E., Montesinos, E. and Feliu, L. 2006a. Improvement of cyclic decapeptides against plant pathogenic bacteria using a combinatorial chemistry approach. Peptides 27:2575-2584. https://doi.org/10.1016/j.peptides.2006.05.001
- Monroc, S., Badosa, E., Feliu, L., Planas, M., Montesinos, E. and Bardaji, E. 2006b. De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria. Peptides 27:2567-2574. https://doi.org/10.1016/j.peptides.2006.04.019
- Montesinos, E. 2007. Antimicrobial peptides and plant disease control. FEMS Microbiol. Lett. 270:1-11. https://doi.org/10.1111/j.1574-6968.2007.00683.x
- Montesinos, E. and Bardaji, E. 2008. Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control. Chem. Biodivers. 5:1225-1237. https://doi.org/10.1002/cbdv.200890111
- Moon, S. S., Chen, J. L., Moore, R. E. and Patterson, G. M. 1992. Calophycin, a fungicidal cyclic decapeptide from the terrestrial blue-green alga Calothrix fusca. J. Org. Chem. 57:1097-1103. https://doi.org/10.1021/jo00030a013
- Murray, T., Leighton, F. C. and Seddon, B. 1986. Inhibition of fungal spore germination by gramicidin S and its potential use as a biocontrol against fungal plant pathogens. Lett. Appl. Microbiol. 3:5-7. https://doi.org/10.1111/j.1472-765X.1986.tb01534.x
- Nagiec, M. M., Nagiec, E. E., Baltisberger, J. A., Wells, G. B., Lester, R. L. and Dickson, R. C. 1997. Sphingolipid synthesis as a target for antifungal drugs complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J. Biol. Chem. 272:9809-9817. https://doi.org/10.1074/jbc.272.15.9809
- Nielsen, T. H., Sorensen, D., Tobiasen, C., Andersen, J. B., Christophersen, C., Givskov, M. and Sorensen, J. 2002. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl. Environ. Microbiol. 68:3416-3423. https://doi.org/10.1128/AEM.68.7.3416-3423.2002
- Nielsen, T. H. and Sorensen, J. 2003. Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl. Environ. Microbiol. 69:861-868. https://doi.org/10.1128/AEM.69.2.861-868.2003
- Ongena, M., Jacques, P., Tour, Y., Destain, J., Jabrane, A. and Thonart, P. 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Microbiol. Biotechnol. 69:29-38. https://doi.org/10.1007/s00253-005-1940-3
- Osada, H. and Isono, K. 1986. Purification and characterization of ascamycin-hydrolysing aminopeptidase from Xanthomonas citri. Biochem. J. 233:459-463. https://doi.org/10.1042/bj2330459
- Park, C. N., Lee, J. M., Lee, D. and Kim, B. S. 2008. Antifungal activity of valinomycin, a peptide antibiotic produced by Streptomyces sp. Strain M10 antagonistic to Botrytis cinerea. J. Microbiol. Biotechnol. 18:880-884.
- Pedras, M. S. C., Ismail, N., Quail, J. W. and Boyetchko, S. M. 2003. Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the biocontrol bacterium Pseudomonas fluorescens. Phytochemistry 62:1105-1114. https://doi.org/10.1016/S0031-9422(02)00617-9
- Pergament, I. and Carmeli, S. 1994. Schizotrin A; a novel antimicrobial cyclic peptide from a cyanobacterium. Tetrahedron Lett. 35:8473-8476. https://doi.org/10.1016/S0040-4039(00)74436-4
- Perkins, J., Guterman, S., Howitt, C., Williams, V. and Pero, J. 1990. Streptomyces genes involved in biosynthesis of the peptide antibiotic valinomycin. J. Bacteriol. 172: 3108-3116. https://doi.org/10.1128/jb.172.6.3108-3116.1990
- Perron, G. G., Zasloff, M. and Bell, G. 2006. Experimental evolution of resistance to an antimicrobial peptide. Proc. R. Soc. London, B 273:251-256. https://doi.org/10.1098/rspb.2005.3301
- Peypoux, F., Bonmatin, J. and Wallach, J. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51:553-563. https://doi.org/10.1007/s002530051432
- Peypoux, F., Pommier, M., Marion, D., Ptak, M., Das, B. and Michel, G. 1986. Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J. Antibiot. 39:636-641. https://doi.org/10.7164/antibiotics.39.636
- Reed, J. D., Edwards, D. L. and Gonzalez, C. F. 1997. Synthetic peptide combinatorial libraries: a method for the identification of bioactive peptides against phytopathogenic fungi. Mol. Plant-Microbe Interact. 10:537-549. https://doi.org/10.1094/MPMI.1997.10.5.537
- Rezai, T., Yu, B., Millhauser, G. L., Jacobson, M. P. and Lokey, R. S. 2006. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J. Am. Chem. Soc. 128:2510-2511. https://doi.org/10.1021/ja0563455
- Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M. and Perez-Garcia, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant-Microbe Interact. 20:430-440. https://doi.org/10.1094/MPMI-20-4-0430
- Satomi, T., Kusakabe, H., Nakamura, G., Nishio, T., Uramoto, M. and Isono, K. 1982. Neopeptins A and B, new antifungal antibiotics. Agric. Biol. Chem. 46:2621-2623. https://doi.org/10.1271/bbb1961.46.2621
- Selim, S., Negrel, J., Govaerts, C., Gianinazzi, S. and van Tuinen, D. 2005. Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 Isolated from the Sorghum mycorrhizosphere. Appl. Environ. Microbiol. 71:6501-6507. https://doi.org/10.1128/AEM.71.11.6501-6507.2005
- Shai, Y. 1995. Molecular recognition between membrane-spanning polypeptides. Trends Biochemical Sci. 20:460-464. https://doi.org/10.1016/S0968-0004(00)89101-X
- Singh, A., Phougat, N., Kumar, M. and Chhillar, A. 2013. Antifungal proteins: potent candidate for inhibition of pathogenic fungi. Curr. Bioact. Compd. 9:101-112. https://doi.org/10.2174/22115528112019990007
- Singh, P. and Cameotra, S. S. 2004. Potential applications of microbial surfactants in biomedical sciences. Trends in Biotech. 22:142-146. https://doi.org/10.1016/j.tibtech.2004.01.010
- SirDeshpande, B. V. and Toogood, P. L. 1995. Mechanism of protein synthesis inhibition by didemnin B in vitro. Biochem. J. 34:9177-9184. https://doi.org/10.1021/bi00028a030
- Smits, G., C Kapteyn, J., van den Ende, H. and M Klis, F. 1999. Cell wall dynamics in yeast. Curr. Opin. Microbiol. 2:348-352. https://doi.org/10.1016/S1369-5274(99)80061-7
- Stall, R. E. and Seymour, C. P. 1983. Canker, a threat to citrus in the Gulf-Coast states. Plant Dis. 67:581-585. https://doi.org/10.1094/PD-67-581
- Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56:845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
- Strobel, G. A., Miller, R. V., Martinez-Miller, C., Condron, M. M., Teplow, D. B. and Hess, W. 1999. Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919-1926. https://doi.org/10.1099/13500872-145-8-1919
- Takesako, K., Ikai, K., Haruna, F., Endo, M., Shimanaka, K., Sono, E., Nakamura, T., Kato, I. and Yamaguchi, H. 1991. Aureobasidins, new antifungal antibiotics. Taxonomy, fermentation, isolation, and properties. J. Antibiot. 44:919-924. https://doi.org/10.7164/antibiotics.44.919
- Tanaka, K., Ishihara, A. and Nakajima, H. 2014. Isolation of anteiso-C17, iso-C17, iso-C16, and iso-C15 Bacillomycin D from Bacillus amyloliquefaciens SD-32 and their antifungal activities against plant pathogens. J. Agric. Food Chem. 62:1469-1476. https://doi.org/10.1021/jf404531t
- Thimon, L., Peyoux, F., Maget-Dana, R. and Michel, G. 1992. Surface-active properties of antifungal lipopeptides produced by Bacillus subtilis. J. Am. Oil. Chem. Soc. 69:92-93. https://doi.org/10.1007/BF02635884
- Troskie, A. M. 2014. Tyrocidines, cyclic decapeptides produced by soil bacilli, as potent inhibitors of fungal pathogens. Thesis (PhD)-Stellenbosch University.
- Ubukata, M., Uramoto, M. and Isono, K. 1984. The structure of neopeptins, inhibitors of fungal cell wall biosynthesis. Tetrahedron Lett. 25:423-426. https://doi.org/10.1016/S0040-4039(00)99901-5
- Ubukata, M., Uramoto, M., Uzawa, J. and Isono, K. 1986. Structure and biological activity of neopeptins A, B and C, inhibitors of fungal cell wall glycan synthesis. Agric. Biol. Chem. 50:357-365. https://doi.org/10.1271/bbb1961.50.357
- Vijayakumar, E., Roy, K., Chatterjee, S., Deshmukh, S., Ganguli, B., Fehlhaber, H.-W. and Kogler, H. 1996. Arthrichitin. A new cell wall active metabolite from Arthrinium phaeospermum. J. Org. Chem. 61:6591-6593. https://doi.org/10.1021/jo960769n
- Wang, J., Yu, Y., Tang, K., Liu, W., He, X., Huang, X. and Deng, Z. 2010. Identification and analysis of the biosynthetic gene cluster encoding the thiopeptide antibiotic cyclothiazomycin in Streptomyces hygroscopicus 10-22. Appl. Environ. Microbiol. 76:2335-2344. https://doi.org/10.1128/AEM.01790-09
- Xu, S. J. and Choi, W. 2014. Antifungal activity of Paenibacillus kribbensis strain T-9 isolated from soils against several plant pathogenic fungi. Plant Pathol. J. 30:102-108. https://doi.org/10.5423/PPJ.OA.05.2013.0052
- Yoon, M. Y. and Kim, J. C. 2013. Recent trends in studies on botanical fungicides in agriculture. Plant Pathol. J. 29:1-9. https://doi.org/10.5423/PPJ.RW.05.2012.0072
피인용 문헌
- Cultivable bacterial communities associated with roots of rose-scented geranium (Pelargonium graveolens) with the potential to contribute to plant growth vol.111, 2017, https://doi.org/10.1016/j.apsoil.2016.12.002
- Antifungal and Antiviral Cyclic Peptides from the Deep-Sea-Derived Fungus Simplicillium obclavatum EIODSF 020 vol.65, pp.25, 2017, https://doi.org/10.1021/acs.jafc.7b01238
- Surveying the potential of secreted antimicrobial peptides to enhance plant disease resistance vol.6, 2015, https://doi.org/10.3389/fpls.2015.00900
- Naturally occurring amino acid derivatives with herbicidal, fungicidal or insecticidal activity vol.48, pp.4, 2016, https://doi.org/10.1007/s00726-016-2176-5
- Efficacy of cell free supernatant from Bacillus subtilis ET-1, an Iturin A producer strain, on biocontrol of green and gray mold vol.134, 2017, https://doi.org/10.1016/j.postharvbio.2017.08.001
- Importance of prumycin produced by Bacillus amyloliquefaciens SD-32 in biocontrol against cucumber powdery mildew disease 2017, https://doi.org/10.1002/ps.4630
- Tryptophan-Containing Cyclic Decapeptides with Activity against Plant Pathogenic Bacteria vol.22, pp.11, 2017, https://doi.org/10.3390/molecules22111817
- Antimicrobial activity of LFchimera synthetic peptide against plant pathogenic bacteria vol.50, pp.19-20, 2017, https://doi.org/10.1080/03235408.2017.1411173
- Understanding and designing head-to-tail cyclic peptides vol.109, pp.10, 2018, https://doi.org/10.1002/bip.23113
- Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group vol.10, pp.1664-302X, 2019, https://doi.org/10.3389/fmicb.2019.00302