DOI QR코드

DOI QR Code

Heavy Metal Leaching, CO2 Uptake and Mechanical Characteristics of Carbonated Porous Concrete with Alkali-Activated Slag and Bottom Ash

  • Kim, G.M. (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jang, J.G. (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Naeem, Faizan (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, H.K. (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2015.07.09
  • Accepted : 2015.08.17
  • Published : 2015.09.30

Abstract

In the present study, a porous concrete with alkali activated slag (AAS) and coal bottom ash was developed and the effect of carbonation on the physical property, microstructural characteristic, and heavy metal leaching behavior of the porous concrete were investigated. Independent variables, such as the type of the alkali activator and binder, the amount of paste, and $CO_2$ concentration, were considered. The experimental test results showed that the measured void ratio and compressive strength of the carbonated porous concrete exceeded minimum level stated in ACI 522 for general porous concrete. A new quantitative TG analysis for evaluating $CO_2$ uptake in AAS was proposed, and the result showed that the $CO_2$ uptake in AAS paste was approximately twice as high as that in OPC paste. The leached concentrations of heavy metals from carbonated porous concrete were below the relevant environmental criteria.

Keywords

Acknowledgement

Supported by : Ministry of Trade Industrial and Energy

References

  1. American Concrete Institute, ACI 522R-10. Report on pervious concrete. ACI Committee 522 2010.
  2. American Society for Testing and Materials, ASTM C39. (2012). Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM International.
  3. Bakharev, T., Sanjayan, J. G., & Cheng, Y.-B. (2001). Resistance of alkali-activated slag concrete to carbonation. Cement and Concrete Research, 31, 1277-1283. https://doi.org/10.1016/S0008-8846(01)00574-9
  4. Bernal, S. A., Nicolas, R., Provis, J. L., De Gutierrez, R. M., & van Deventer, J. S. (2014). Natural carbonation of aged alkali-activated slag concretes. Materials and Structures, 47, 693-707. https://doi.org/10.1617/s11527-013-0089-2
  5. Bertos, M. F., Simons, S. J. R., Hills, C. D., & Carey, P. J. (2004). A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of $CO_2$. Journal of Hazardous Materials, 112(2), 193-205. https://doi.org/10.1016/j.jhazmat.2004.04.019
  6. Bhutta, M. A. R., Hasanah, N., Farhayu, N., Hussin, M. W., Tahir, M. B. M., & Mirza, J. (2013). Properties of porous concrete from waste crushed concrete (recycled aggregate). Construction and Building Materials, 47, 1243-1248. https://doi.org/10.1016/j.conbuildmat.2013.06.022
  7. Bhutta, M. A. R., Tsuruta, K., & Mirza, J. (2012). Evaluation of high-performance porous concrete properties. Construction and Building Materials, 31, 67-73. https://doi.org/10.1016/j.conbuildmat.2011.12.024
  8. Bochenczyk, A. U. (2010). Mineral sequestration of CO2 in suspensions containing mixtures of fly ashes and desulphurization waste. Gosposarka Surowcami Mineralnymi, 26, 109-118.
  9. Chi, M.C., Chang, J.J., & Huang, R. (2012). Strength and drying shrinkage of alkali-activated slag paste and mortar. Advances in Civil Engineering, 2012.
  10. Deja, J. (2002). Immobilization of $Cr^{6+},\;Cd^{2+},\;Zn^{2+}\;and\;Pb^{2+}$ in alkali-activated slag binders. Cement and Concrete Research, 32, 1971-1979. https://doi.org/10.1016/S0008-8846(02)00904-3
  11. Dermatas, D., & Meng, X. (2003). Utilization of fly ash for stabilization/solidification of heavy metal contaminated soil. Engineering Geology, 70, 337-394.
  12. Edwards, H. G., Currie, K. J., Ali, H. R., Villar, S. E. J., David, A. R., & Denton, J. (2007). Raman spectroscopy of natron: shedding light on ancient Egyptian mummification. Analytical and Bioanalytical Chemistry, 388(3), 683-689. https://doi.org/10.1007/s00216-007-1249-4
  13. Ekmekyapar, A., Ersahan, H., & Yapici, S. (1996). Nonisothermal decomposition kinetics of trona. Industrial and Engineering Chemistry Research, 35, 258-262. https://doi.org/10.1021/ie950171q
  14. Eloneva, S., Teir, S., Salminen, J., Fogelholm, C. J., & Zevenhoven, R. (2008). Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy, 33, 1461-1467. https://doi.org/10.1016/j.energy.2008.05.003
  15. Environment, Health and Safety Online. (2008). The EPA TCLP: Toxicity characteristic leaching procedure and characteristic wastes (D-codes). Environment, Health and Safety Online.
  16. Fleischer, M., Sarofim, A. F., Fassett, D. W., Hammond, P., Shacklette, H. T., Nisbet, I. C., & Epstein, S. (1974). Environmental impact of cadmium: a review by the Panel on Hazardous Trace Substances. Environmental Health Perspectives, 7, 253. https://doi.org/10.1289/ehp.747253
  17. Guo, Q., Qu, J., Qi, T., Wei, G., & Han, B. (2011). Activation pretreatment of limonitic laterite ores by alkali-roasting method using sodium carbonate. Minerals Engineering, 24, 825-832. https://doi.org/10.1016/j.mineng.2011.03.001
  18. Halim, C. E., Acott, J. A., Natawardaya, H., Amal, R., Beydoun, D., & Low, G. (2004). Comparison between acetic acid and landfill leachates for the leaching of Pb(II), Cd(II), As(V), and Cr(VI) from cementitious wastes. Environmental Science and Technology, 38, 3977-3983. https://doi.org/10.1021/es0350740
  19. Jang, J. G., Ahn, Y. B., Souri, H., & Lee, H. K. (2015a). A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: Heavy metal leaching characteristics and compressive strength. Construction and Building Materials, 79, 173-181. https://doi.org/10.1016/j.conbuildmat.2015.01.058
  20. Jang, J. G., Kim, H. J., Park, S. M., & Lee, H. K. (2015b). The influence of sodium hydrogen carbonate on the hydration of cement. Construction and Building Materials, 94, 746-749. https://doi.org/10.1016/j.conbuildmat.2015.07.121
  21. Japanese Standard Association, JIS A 1104. (2006). Methods of test for bulk density of aggregates and solid content in aggregates. JSA
  22. Kar, A., Ray, I., Halabe, U. B., Unnikrishnan, A., & Dawson-Andoh, B. (2014). Characterizations and quantitative estimation of alkali-activated binder paste from microstructures. International Journal of Concrete Structures and Materials, 8, 213-228. https://doi.org/10.1007/s40069-014-0069-0
  23. Kim, H. K., Ha, K. A., Jang, J. G., & Lee, H. K. (2014a). Mechanical and chemical characteristics of bottom ash aggregates cold-bonded with fly ash. Journal of Korean Ceramic Society, 51, 57-63. https://doi.org/10.4191/kcers.2014.51.2.57
  24. Kim, H. K., Jang, J. G., Choi, Y. C., & Lee, H. K. (2014b). Improved chloride resistance of high-strength concrete amended with coal bottom ash for internal curing. Construction and Building Materials, 71, 334-343. https://doi.org/10.1016/j.conbuildmat.2014.08.069
  25. Kim, M. S., Jun, Y., Lee, C., & Oh, J. E. (2013). Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cement and Concrete Research, 54, 208-214. https://doi.org/10.1016/j.cemconres.2013.09.011
  26. Kim, H. K., & Lee, H. K. (2010). Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Applied Acoustics, 71, 607-615. https://doi.org/10.1016/j.apacoust.2010.02.001
  27. Kuo, W. T., Liu, C. C., & Su, D. S. (2013). Use of washed municipal solid waste incinerator bottom ash in pervious concrete. Cement & Concrete Composites, 37, 328-335. https://doi.org/10.1016/j.cemconcomp.2013.01.001
  28. Li, X. D., Poon, C. S., Sun, H., Lo, I. M. C., & Kirk, D. W. (2012). Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials. Journal of Hazardous Materials, 82(3), 215-230. https://doi.org/10.1016/S0304-3894(00)00360-5
  29. Lian, C., Zhuge, Y., & Beecham, S. (2011). The relationship between porosity and strength of porous concrete. Construction and Building Materials, 25, 4292-4298.
  30. NSF International standard/American National Standard, NSF/ANSI 61-2007a. (2007). Drinking water system components-health effects. Oxfordshire: NSF International.
  31. Park, S. B., & Tia, M. (2004). An experimental study on the water purification properties of porous concrete. Cement and Concrete Research, 34, 177-184. https://doi.org/10.1016/S0008-8846(03)00223-0
  32. Perera, D. S., Aly, Z., Vance, E. R., & Mizumo, M. (2005). Immobilization of Pb in a geopolymer matrix. Journal of the American Ceramic Society, 88, 2586-2588. https://doi.org/10.1111/j.1551-2916.2005.00438.x
  33. Phoo-ngernkham, T., Maegawa, A., Mishima, N., Hatanaka, S., & Chindaprasirt, P. (2015). Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer. Construction and Building Materials, 91, 1-8. https://doi.org/10.1016/j.conbuildmat.2015.05.001
  34. Puertas, F., Palacious, M., & Vazquez, T. (2006). Carbonation process of alkali-activated slag mortars. Journal of Materials Science, 41, 3071-3082. https://doi.org/10.1007/s10853-005-1821-2
  35. Qian, G., Sun, D. D., & Tay, J. H. (2003a). Immobilization of mercury and zinc in an alkali-activated slag matrix. Journal of Hazardous Materials, 101(2), 65-77. https://doi.org/10.1016/S0304-3894(03)00143-2
  36. Qian, G., Sun, D. D., & Tay, J. H. (2003b). Characterization of mercury- and zinc-doped alkali-activated slag matrix Part II. Zinc. Cement and Concrete Research, 33, 1257-1262. https://doi.org/10.1016/S0008-8846(03)00046-2
  37. Qian, G., Sun, D. D., & Tay, J. H. (2003c). Characterization of mercury- and zinc-doped alkali-activated slag matrix Part I. Mercury. Cement and Concrete Research, 33, 1251-1256. https://doi.org/10.1016/S0008-8846(03)00045-0
  38. Ravikumar, D., & Neithalath, N. (2013). Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure. Cement and Concrete Research, 47, 31-42. https://doi.org/10.1016/j.cemconres.2013.01.007
  39. Shi, C., & Fernandez-Jimenez, A. (2006). Stabilization/solidification of hazardous and radioactive wastes with alkaliactivated cements. Journal of Hazardous Materials, 137(3), 1656-1663. https://doi.org/10.1016/j.jhazmat.2006.05.008
  40. Singh, M., & Siddique, R. (2014). Strength properties and micro-structural properties of concrete containing coal bottom ash as partial replacement of fine aggregate. Construction and Building Materials, 50, 246-256. https://doi.org/10.1016/j.conbuildmat.2013.09.026
  41. Song, S., & Jennings, H. M. (1999). Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cement and Concrete Research, 29, 159-170. https://doi.org/10.1016/S0008-8846(98)00212-9
  42. Sriravindrarajah, R., Wang, N. D. H., & Ervin, L. J. W. (2012). Mix design for pervious recycled aggregate concrete. International Journal of Concrete Structures and Materials, 6(4), 239-246. https://doi.org/10.1007/s40069-012-0024-x
  43. Vandecasteele, C., Dutre, V., Geysen, D., & Wauters, G. (2002). Solidification/stabilization of arsenic bearing fly ash from the metallurgical industry. Immobilization mechanism of arsenic. Waste Management, 22(2), 143-146. https://doi.org/10.1016/S0956-053X(01)00062-9
  44. Wang, S. D., & Scrivener, K. L. (1995). Hydration products of alkali activated slag cement. Cement and Concrete Research, 25, 561-571. https://doi.org/10.1016/0008-8846(95)00045-E
  45. Ylmen, R., & Jaglid, U. (2013). Carbonation of Portland cement studied by diffuse reflection fourier transform infrared spectroscopy. International Journal of Concrete Structures and Materials, 7, 119-125. https://doi.org/10.1007/s40069-013-0039-y
  46. Zhang, J., Provis, J. L., Feng, D., & van Deventer, J. S. J. (2008). Geopolymers for immobilization of $Cr^{6+},\;Cd^{2+},\;and\;Pb^{2+}$. Journal of Hazardous Materials, 157, 587-598. https://doi.org/10.1016/j.jhazmat.2008.01.053
  47. Zhang, Y., Sun, W., Chen, Q., & Chen, L. (2007). Synthesis and heavy metal immobilization behaviors of slag based geopolymer. Journal of Hazardous Materials, 143, 206-213. https://doi.org/10.1016/j.jhazmat.2006.09.033

Cited by

  1. Unlocking the role of MgO in the carbonation of alkali-activated slag cement vol.5, pp.7, 2015, https://doi.org/10.1039/c7qi00754j
  2. Thermal evolution of hydrates in carbonation-cured Portland cement vol.51, pp.1, 2015, https://doi.org/10.1617/s11527-017-1114-7
  3. Binder chemistry of sodium carbonate-activated CFBC fly ash vol.51, pp.3, 2015, https://doi.org/10.1617/s11527-018-1183-2
  4. Effect of WRP and FGD gypsum on engineering properties and microstructures of HVBSM vol.7, pp.2, 2015, https://doi.org/10.1680/jgrma.18.00011
  5. A synopsis of carbonation of alkali-activated materials vol.7, pp.3, 2015, https://doi.org/10.1680/jgrma.18.00052
  6. Utilization of Calcium Carbide Residue Using Granulated Blast Furnace Slag vol.12, pp.21, 2015, https://doi.org/10.3390/ma12213511
  7. Application of aqueous carbonated slags in the immobilization of heavy metals in field-contaminated soils vol.25, pp.3, 2015, https://doi.org/10.4491/eer.2019.101
  8. A critical review and gap analysis on the use of coal bottom ash as a substitute constituent in concrete vol.268, pp.None, 2020, https://doi.org/10.1016/j.jclepro.2020.121752
  9. 총설: 콘크리트 및 모르타르를 위한 석탄 바텀애시의 활용 vol.8, pp.3, 2015, https://doi.org/10.14190/jrcr.2020.8.3.333
  10. Process Development of Fly Ash-Based Geopolymer Mortars in View of the Mechanical Characteristics vol.14, pp.11, 2015, https://doi.org/10.3390/ma14112935
  11. Sound-absorption and NOx-removal performances of TiO2-incorporated porous concrete made with bottom ash aggregates vol.12, pp.1, 2015, https://doi.org/10.12989/acc.2021.12.1.001
  12. Exploration of effects of CO2 exposure on the NOx-removal performance of TiO2-incorporated Portland cement evaluated via microstructural and morphological investigation vol.45, pp.None, 2015, https://doi.org/10.1016/j.jobe.2021.103609