• Title/Summary/Keyword: Infected Seed Potato

Search Result 14, Processing Time 0.024 seconds

Development of non-destructive measurement method for discriminating disease-infected seed potato using visible/near-Infrared reflectance technique (광 반사방식을 이용한 감염 씨감자 비파괴 선별 기술 개발)

  • Kim, Dae-Yong;Cho, Byoung-Kwan;Lee, Youn-Su
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.117-123
    • /
    • 2012
  • Pathogenic fungi and bacteria such as Pectobacterium atrosepticum, Clavibacter michiganensis subsp. sepedonicus, Verticillium albo-atrum, and Rhizoctonia solani were the major microorganism which causes diseases in seed potato during postharvest process. Current detection method for disease-infected seed potato relies on human inspection, which is subjective, inaccurate and labor-intensive method. In this study, a reflectance spectroscopy was used to classify sound and disease-infected seed potatoes with the spectral range from 400 to 1100 nm. Partial least square discriminant analysis (PLS-DA) with various preprocessing methods was used to investigate the feasibility of classification between sound and disease-infected seed potatoes. The classification accuracy was above 97 % for discriminating disease seed potatoes from sound ones. The results show that Vis/NIR reflectance method has good potential for non-destructive sorting for disease-infected seed potatoes.

Development of On-line Sorting System for Detection of Infected Seed Potatoes Using Visible Near-Infrared Transmittance Spectral Technique (가시광 및 근적외선 투과분광법을 이용한 감염 씨감자 온라인 선별시스템 개발)

  • Kim, Dae Yong;Mo, Changyeun;Kang, Jun-Soon;Cho, Byoung-Kwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • In this study, an online seed potato sorting system using a visible and near infrared (40 1100 nm) transmittance spectral technique and statistical model was evaluated for the nondestructive determination of infected and sound seed potatoes. Seed potatoes that had been artificially infected with Pectobacterium atrosepticum, which is known to cause a soil borne disease infection, were prepared for the experiments. After acquiring transmittance spectra from sound and infected seed potatoes, a determination algorithm for detecting infected seed potatoes was developed using the partial least square discriminant analysis method. The coefficient of determination($R^2_p$) of the prediction model was 0.943, and the classification accuracy was above 99% (n = 80) for discriminating diseased seed potatoes from sound ones. This online sorting system has good potential for developing a technique to detect agricultural products that are infected and contaminated by pathogens.

Potato Pests Observed in Seed Potatoes, North Korea during 2001 to 2005 (북한 씨감자 생산에서의 병해충 발생(2001-2005))

  • Hahm Young-Il
    • Research in Plant Disease
    • /
    • v.12 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • During visiting North Korea from 2001 to 2005, I have had a few chances to observe and discuss several North Korean scientists for the seed production program and also, the occurrence of potato pests. Healthy seed production, especially in the early generations, e.g. the production of virus-free starting materials as well as in vitro pre-basic seeds (G0) by hydroponics and basic seeds under netted houses according to her new national seed potato program of Academy of Agricultural Science, Pyongyang, North Korea, has been done well so far. Some major pests occurred, however, in the early generations such as pre-basic seed (G0) in greenhouse, basic seed (G1) in screenhouse, foundation seed-I (G2) and even ware potatoes in the fields are Phytopitthora infestans, Spongospora subterrunea, Ralstonia solanacearum, Pythium spp. and some viruses such as Potato virus X, Potato virus Y, Potato leafroll virus, and also larger potato ladybeetle, greenhouse whitefly and potato tuber moth. Therefore, the success of healthy seed production in North Korea will be thoroughly depended on the pest control and the multiplication of virus-free seed stocks in the isolated areas, especially where no infected potatoes are grown.

Serological Identification of Potato Viruses in Korea (감자 바이러스의 혈청학적 동정에 관한 연구)

  • La Yong-Joon
    • Korean journal of applied entomology
    • /
    • v.13 no.1 s.18
    • /
    • pp.41-45
    • /
    • 1974
  • A total of 230 apparently healthy looking potato stocks and 80 potato stocks with symptoms of virus infection were collected from various seed potato farms in Korea and the incidence of potato virus X (PVX), potato virus S (PVS), potato virus M (PVM) and potato virus Y (PVY) was determined by serological microprecipitin tests. Results obtained are as follows. 1. Serological microprecipitin test retreated the presence of PVX, PVS, PVM and PVY in a number of potato stocks grown for the production of seed potatoes in Korea. 2. The occurrence of potato virus M is reported here for the first time in Korea with experimental evidence. 3. Practically $100\%$ (290 stocks, of the apparently healthy looking potato stocks were demonstrated to be infected with both PVX and PVS. The infection percentages of potato stocks with combination of PVX, PVS, PVM and PVY were as follows. PVX+PVS+PVM:$10.3\%$, PVX+PVS+PVY:$4.5\%$, PVX+PVS+PVM+PVY:$1.03\%$ 4. Irish Cobbler and Shimabara, which are the two major potato varieties in Korea, appear to be symptomless carriers of PVX and PVS. However, when these varieties were infected additionally with PVY, usually severe symptoms resulted. 5. Serological microprecipitin technique appears to be highly suitable for early, quick and reliable diagnosis of PVX, PVS PVM and PVY. It is particularly suited for large scale testing of seed potato stocks for the presence of viruses mentioned above.

  • PDF

A Survey of Potato Virus Diseases and Insect Vectors at Seed Potato Production Area in Jeon Bug(II). Serological Test on Virus Diseases of Seed Potatoes (전북지방의 씨감자 생산을 위한 적지선정 및 감자 바이러스병에 관한 연구(II). 씨감자의 바이러스병 검정)

  • Yoon Soon Kie;So In Yung;Choi Seong Shick
    • Korean journal of applied entomology
    • /
    • v.14 no.2 s.23
    • /
    • pp.71-76
    • /
    • 1975
  • The study has been carried to find a proper site for seed potato production in Jeon Bug Province, Korea. Two fields, one at the alpine area (700-800 m sea level) in Muju county and the other at the plain area in Jeoniu, were chose for this study. Seed potatoes for the experiment were obtained from Alpine Experiment Station and from the traditional sources in Muju area. During the growing season the virus infection (Potato virus X,S,Y, and M) was detected by serolgical method. The average percent of virus infection on the original seed potatoes, which have been used as a seed source in Korea, was $50.5\%$, and the ratio of the infection for each of potato virus, Y, M and X was 34..87, 40.33, 41.00 and $87.10\%$, respectively. Infection percentage of virus at first year in Muju area was $11.7\%$ and those in Jeonju area was $18.95\%$. In case of potato virus Y, the most prevalent virus in Korea, lower Infection percentage $(6.45\%)$ was found in Muju area than in tile Jeonju area $(26.0\%)$ when the seed from Alpine Experiment Station was planted in both areas. The percentage of infected seed potato, Alpine Experiment Station$(41.75\%)$ was almost the same as those from the traditional sources in Muju $(42.17\%)$. The production of seed potato, however, was much better by the seeds from Alpine Experiment Station.

  • PDF

Verticillium Wilt of Potato Caused by Verticillium albo-atrum in Daegwallyong Area in Korea

  • Kim, Jong-Tae;Ryu, Kyoung-Yul;Kim, Jeom-Soon;Hahm, Young-Il;Yu, Seung-Hun
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.184-187
    • /
    • 2003
  • Verticillium wilt was first observed in 2001 on potatoes (Solanum tuberosum) cv. Superior at Daegwallyong area, one of the major seed potato producing areas in Korea. The wilted potato plants showed typical symptoms including gradual yellowing and interveinal necrosis. There was discoloration in the vascular tissues of the infected stems which turned light brown. Fungal isolates from discolored vascular tissues were whitish to creamy with folding on potato dextrose agar medium, where they used to produce resting dark mycelia but no micro-sclerotia. Conidiophores were septate with side branches, swelled at the base, and arranged in a whorl. Conidia were 2.5-11.2$\times$2.0-4.5 $\mu\textrm{m}$ um in size and were borne in small clusters at the tips of phialides. Optimal temperature range for mycelial growth was $25-30^{\circ}C$. Based on these cultural and morphological characteristics, the fungus was identified as Verticillium albo-atrum Reink & Berth. Pathogenicity tests by root dipping method revealed that the fungus caused the same symptoms as observed in naturally infected potato plants. This is the first report of Verticillium wilt on potato caused by Verticillium albo-atrum in Korea.

Virus Disease Incidences of Sweet Potatoes in Korea

  • Kwak Hae-Ryun;Kim Mi-Kyeong;Chung Mi-Nam;Lee Su-Heon;Park Jin-Woo;Kim Kook-Hyung;Choi Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.239-247
    • /
    • 2006
  • In 2003, a survey of sweet potato virus disease was carried out in seed boxes as well as in various sweet potato fields. Virus infection rate was $5\sim100%$ and 100% at seed boxes and fields, respectively. No relationship of the disease incidence and severity was observed between sweet potato cultivating areas and cultivars. A total of 179 samples were collected and analyzed based on serological, electron microscopic and molecular properties. Field-grown sweet potatoes were examined to inspect 8 different viruses using NCM-ELISA, resulting that 30% of sweet potato was infected by one virus, whereas 70% was by more than 2 viruses. However, RT-PCR using primers selected for seven viruses, such as Sweet potato feathery mottle virus (SPFMV) revealed that of one-hundred seventy-nine tested; 71 of SPFMV, 29 of SPGV, 19 of SPFMV+SPGV, 1 of SPFMV+SwPLV, 1 of SPFMV+SPLCV, 2 of SPFMV+SPGV+SwPLV, 6 of SPFMV+SPGV+SPLCV, 2 of SPFMV+SPGV+SwPLV+SPLCV and 48 of unknown viruses were identified from the field samples. In root, viral diseases were severer in Yeoju than in Mokpo Experiment Station and infection rate was much different depending on sweet potato cultivars.

Seed Potato Certification in Korea (한국의 씨감자 검역)

  • La Yong-Joon;Franckowiak J. D.;Brown W. M.
    • Korean journal of applied entomology
    • /
    • v.16 no.3 s.32
    • /
    • pp.163-170
    • /
    • 1977
  • Potato diseases, especially mosaics and leaf roll, appear to reduce potato yield in Korea more than any other factor. A seed potato certification program was established at the Alpine Experiment Station (AES) in 1961 to produce high quality seed potatoes for distribution to Korean farmers. The present program for production of certified seed of Namjak (Irish Cobbler), the only variety recommended for spring plantings, is outlined. In 1976, approximately 10,000 MT of certified grade Namjak seed was produced by members of two Seed Producers Cooperatives in the Daekwanryeong area for distribution by the Office of Seed Production and Distribution (OSPD). The seed was inspected and certified by officers of the National Agricultural Products Inspection Office (NAPIO). Although the quality of the certified seed is far superior to that used by many farmers, the supply planted less than 1/5 of the 1977 potato crop. Certified seed of Shimabara, the variety recommended for autumn plantings, is not produced in Korea. The yield response of virus infected seed to improved cultural practices is poor. Therefore, an increase in potato acreage and yields appears to be possible only if more good quality seed is used by Korean farmers. A two or three fold increase in seed supply would be desirable. The volume of seed could be increased by expanding the production area and by improving yield in seed fields. More land is available in the alpine area and good seed potatoes could be grown in other parts of Korea. Planting better quality seeds and using better cultural pracitces would improve seed yields. Several techniques could be used to improve the quality of elite seed produced at AES. Changes in seed potato certification program should be made so that healthy seed stocks of new varieties can be released rapidly.

  • PDF

Purification and Serology of Potato Virus S (감자 바이러스 S의 순화와 항혈청제조)

  • Lee Soon Hyung;Lee Key Woon;Chung Bong Jo
    • Korean journal of applied entomology
    • /
    • v.16 no.3 s.32
    • /
    • pp.145-148
    • /
    • 1977
  • he study was conducted to produce an antiserum of potato virus S for identification and screening of seed-potatoes. Potato virus S was isolated from infected plants and identified by means of indicator plants and electro microscopy. Isolated potato virus S was multiplied in Nicotiana deebneyii and the virus was purified by a modified method that was developed through this study. The purity of potato virus S was 1.18mg/ml. Purified potato virus S was injected into rabbit intravenously once a week for 5 weeks. Antiserum was collected 10 days after the last injection. The produced antiserum was determined to have a titer of, 1/2048 by means of microprecipitin tests.

  • PDF

Etiological Properties and Coat Protein Gen Analysis of Potato Virus Y Occuring in Potatoes of Korea (우리나라 감자에 발생하는 PVY의 병원학적 특성 및 외피단백질 유전자 분석)

  • ;Richard M. Bostock
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1995.06b
    • /
    • pp.77-96
    • /
    • 1995
  • To obtain basic informations for the improvement of seed potato production in Korea, some etiological properties of potato virus Y(PVY) distributed in the major seed potato production area(Daekwanryeong) were characterized, and the nucleotide and amino acid sequences of the coat protein gene of the PVY strains isolated were analyzed. PVY strains in Daekwonryeong, an alpine area, were identified to be two strains, PVYo and PVYN by symptoms of indicator plants, and their distribution in potato fields was similar. Major symptom on potato varieties by PVY was grouped as either mosaic alone or mosaic accompanied with veinal necrosis in the lower leaves. The symptom occurrence of the two symptoms was similar with Irish Cobbler, but Superior showed a higher rate of mosaic symptom than the other. The PVY strain which was isolated from potato cv. Superior showing typical mosaic symptoms produced symptoms of PVY-O on the indicator plants of Chenopodium amaranticolor, Nicotiana tabacum cv. Xanthi nc and Physalis floridana, but no symptom o Capsicum annum cv. Ace. Moreover, results from the enzyme-linked immunosorbent assay with monoclonal and polyclonal antibodies showed that the isolated PVY reacts strongly with PYV-O antibodies but does not react specifically with PVY-T antibodies. The purified virus particles were flexious with a size of 730$\times$11nm. On the basis of the above characteristics, the strain was identified to be a PVY-O and named as of PVY-K strain. The flight of vector aphids was observed in late May, however, the first occurrence of infected plants was in mid June with the bait plants surrounded with PVY-infected potato plants and early July with the bait plants surrounded with PVY-free potato plants. PVY infection rates by counting symptoms on bait plants (White Burley) were 1.1% with the field surrounded with PVY-free potato plants and 13.7% the fields surrounded with PVY-infected potato plants, showing the effect of infection pressure. The propagated PVY-K strain on tobacco(N. sylvestris) was purified, and the RNA of the virus was extracted by the method of phenol extraction. The size of PVY-K RNA was measured to be 9, 500 nucleotides on agarose gel electrophoresis. The double-stranded cDNAs of PVY-K coat protein(CP) gene derived by the method of polymerase chain reaction were transformed into the competent cells of E. coli JM 109, and 2 clones(pYK6 and pYK17) among 11 clones were confirmed to contain the full-length cDNA. Purified plasmids from pYK17 were cut with Sph I and Xba I were deleted with exonuclease III and were used for sequencing analysis. The PVY-K CP gene was comprised of 801 nucleotides when counted from the clevage site of CAG(Gln)-GCA(Ala) to the stop codon of TGA and encoded 267 amino acids. The molecular weight of the encoded polypeptides was calculated to be 34, 630 daltons. The base composition of the CP gene was 33.3% of adenine, 25.2% of guanine, 20.1% of cytosine and 21.4% of uracil. The polypeptide encoded by PVY-K CP gene was comprised of 22 alanines, 20 threonines, 19 glutamic acids and 18 glycines in order. The homology of nucleotide sequence of PVY-K CP gene with those of PVY-O(Japan), PVY-T(Japan), PVY-TH(Japan), PVYN(the Netherlands), and PVYN(France) was represented as 97.3%, 88.9%, 89.3%, 89.6% and 98.5%, respectively. The amino acid sequence homology of the polypeptide encoded by PVY-K CP gene with those encoded by viruses was represented as 97.4%, 92.5%, 92.9%, 92.9%, and 98.5%, respectively.

  • PDF