DOI QR코드

DOI QR Code

Synthesis and Characterization of NiAl2O4 Inorganic Pigment Nanoparticles by a Reverse Micelle Processing

역-마이셀 공정에 의한 NiAl2O4 무기안료 나노 분말의 합성 및 특성

  • Son, Jeong-Hun (School of Advnced Materials Eng., Changwon National Univ.) ;
  • Bae, Dong-Sik (School of Advnced Materials Eng., Changwon National Univ.)
  • 손정훈 (국립창원대학교 신소재공학과) ;
  • 배동식 (국립창원대학교 신소재공학과)
  • Received : 2014.10.13
  • Accepted : 2015.01.23
  • Published : 2015.02.27

Abstract

$NiAl_2O_4$ nanoparticle was synthesized by a reverse micelle processing for inorganic pigment. $Ni(NO_3)_2{\cdot}6H_2O$ and $Al(NO_3)_3{\cdot}9H_2O$ were used for the precursor in order to synthesize $NiAl_2O_4$ nanoparticles. The aqueous solution, which consisted of a mixing molar ratio of Ni/Al, was 1:2 and heat treated at $800{\sim}1100^{\circ}C$ for 2h. The average size and distribution of synthesized $NiAl_2O_4$ powders are in the range of 10-20 nm and narrow, respectively. The average size of the synthesized $NiAl_2O_4$ powders increased with an increasing water-to-surfactant molar ratio and heating temperature. The crystallinity of synthesized $NiAl_2O_4$ powder increased with an increasing heating temperature. The synthesized $NiAl_2O_4$ powders were characterized by X-ray diffraction analysis(XRD), a field emission scanning electron microscopy(FE-SEM), and a color spectrophotometer. The properties of synthesized powders were affected as a function such as a molar ratio and heating temperature. Results indicate that synthesis using a reverse miclle processing is a favorable process to obtain $NiAl_2O_4$ spinels at low temperatures. The procedure performed suggests that this new synthesis route for producing these oxides has the advantage of being fast and simple. Colorimetric coordinates indicate that the pigments obtained exhibit blue colors.

Keywords

References

  1. A. F. Costa, P. M. Pimentel, F. M. Aquino, D. M. A Melo, M. A. F. Melo and I. M. G Santos, Mater. Lett., 112, 58 (2013). https://doi.org/10.1016/j.matlet.2013.08.044
  2. V. Spelak, D. Schultze, F. Krumeich, U. Steinike and KD. Becker, Solid State Ionics, 677, 141(2001).
  3. S. M. El-Sheikh, S. El-Sherbiny, A. Barhoum and Y. Deng, Colloid Surf. A, 422, 44 (2013). https://doi.org/10.1016/j.colsurfa.2013.01.020
  4. J. Yoshida, M. Stark, J. Holzbock, N. Hüsing, S. Nakanishi, H. Iba, H. Abea and M. Naito, J. Power Sources, 226, 122 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.081
  5. M. Mozaffari, M. EghbaliArani and J. Amighian, J. Magn. Magn. Mater., 322, 3240 (2010). https://doi.org/10.1016/j.jmmm.2010.05.053
  6. B. Balusamy, Y. G. Kandhasamy, A. Senthamizhan, G. Chandrasekaran, M. S. Subramanian and K. Tirukalikundram S, J. rare earths., 30, 1298(2012). https://doi.org/10.1016/S1002-0721(12)60224-5
  7. P. M. T. Cavalcante, M. Dondi, G. Guarini, M. Raimondo and G. Baldi, Dyes Pigments, 80, 226 (2009). https://doi.org/10.1016/j.dyepig.2008.07.004
  8. R. K. Sharma and R. Ghose, Ceram. Int., 40, 3209 (2014). https://doi.org/10.1016/j.ceramint.2013.09.121
  9. J. H. Kim, B. R. Son, D. H. Yoon, K. T. Hwang, H. G. Noh, W. S. Cho and U. S. Kim, Ceram. Int., 38, 5707 (2012). https://doi.org/10.1016/j.ceramint.2012.04.015
  10. H. E. H. Sadek, R. M. Khattab, A. A. Gaber and M. F. Zawrah, Spectrochim. Acta Part A, 125, 353 (2014). https://doi.org/10.1016/j.saa.2014.01.115
  11. J. L. Wang, Y. Q. Li, Y. J. Byon, S. G. Mei and G. L. Zhang, Powder Technol., 235, 303 (2013). https://doi.org/10.1016/j.powtec.2012.10.044
  12. D. Rangappa, T. Naka, A. Kondo, M. Ishii, T. Kobayashi and T. Adschiri, J. Am. Chem. Soc., 36, 129 (2007).
  13. I. S. Ahmed, H. A. Dessouki and A. A. Ali, Spectrochim. Acta Part A, 71, 616 (2008). https://doi.org/10.1016/j.saa.2007.12.050
  14. V. D. l. Luz, M. Prades, H. Beltran and E. Cordoncillo, J. Eur. Ceram. Soc., 33, 3359 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.05.021
  15. S. R. Prim, A. Garcia, R. Galindo, S. Cerro, M. Llusar, M. V. Folgueras and G. Monros, Ceram. Int., 39, 6981 (2013). https://doi.org/10.1016/j.ceramint.2013.02.035
  16. M. Dondi, C. Zanelli, M. Ardit, G. Cruciani, L. Mantovani, M. Tribaudino and G. B. Andreozzi, Ceram. Int., 39, 9533 (2013). https://doi.org/10.1016/j.ceramint.2013.05.072
  17. P. L. nakova, M. Trojan, J. Luxová and J. Trojan, Dyes Pigments, 96, 264 (2013). https://doi.org/10.1016/j.dyepig.2012.07.022
  18. M. Gaudon, A. Apheceixborde, M. Menetrier, A. Le Nestour, and A. Demourgues, Inorg. Chem., 48, 19 (2009). https://doi.org/10.1021/ic801619v
  19. V. S. Vishnu and M. L. Reddy, Sol. Energy Mater. Sol. Cells, 95, 2685 (2011). https://doi.org/10.1016/j.solmat.2011.05.042
  20. R. Ianos, R. Lazau and P. Barvinschi, Adv. Powder Tech., 22, 396 (2011). https://doi.org/10.1016/j.apt.2010.06.006
  21. H. E. H. Sadek, R. M. Khattab, A. A. Gaber and M. F. Zawrah, Spectrochim. Acta Mol Biomol Spectros, 125, 353 (2014). https://doi.org/10.1016/j.saa.2014.01.115
  22. H. S. Hafez and E. El-fadaly, Spectrochim. Acta Mol Biomol Spectros, 95, 8 (2012). https://doi.org/10.1016/j.saa.2012.04.072
  23. A. F. Costa, P. M. Pimentel, F. M. Aquino, D. M. A. Melo, M. A. F. Melo and I. M. GSantos, Mater. Lett., 112, 58 (2013). https://doi.org/10.1016/j.matlet.2013.08.044
  24. F. Yu, J. Yang, J. Ma, J. Du and Y. Zhou, J. Alloy Comp., 468, 443 (2009). https://doi.org/10.1016/j.jallcom.2008.01.018
  25. J. H. Son and D. S. Bae, Korean J. Mater. Res., 24, 370 (2014). https://doi.org/10.3740/MRSK.2014.24.7.370
  26. H. Fathi, J. P. Kelly, V. R. Vasquez, and O. A. Graeve, Langmuir, 28, 9267 (2012). https://doi.org/10.1021/la300586f
  27. H. Matsune, T. Tago, K. Shibata, K. Wakabayashi and M. Kishida, J. Nanopart. Res., 8, 1083 (2006). https://doi.org/10.1007/s11051-006-9070-0
  28. D. B. Zhang, H. M. Cheng and J. M. Ma, J. Mater. Sci. Lett., 20, 439 (2001). https://doi.org/10.1023/A:1010906615079
  29. D. T. Nguyen, D. J. Kim and K. S. Kim, Micron, 42 207 (2011). https://doi.org/10.1016/j.micron.2010.09.008
  30. X. Li, P. Zhang, J. Yang and T. Guo, J. Dent., 39, 45 (2011).