DOI QR코드

DOI QR Code

The Effect of Functional Group Position of the Piperidine Derivatives on the CO2 Absorption Characteristics in the (H2O-Piperidine-CO2) System

(H2O-Piperidine-CO2) system에서 piperidine 유도체의 작용기 위치에 따른 이산화탄소 흡수특성 연구

  • Choi, Jeong Ho (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Yun, Soung Hee (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Kim, Yeong Eun (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Yoon, Yeo Il (Greenhouse Gas Laboratory, Korea Institute of Energy Research) ;
  • Nam, Sung Chan (Greenhouse Gas Laboratory, Korea Institute of Energy Research)
  • 최정호 (한국에너지기술연구원 온실가스연구실) ;
  • 윤성희 (한국에너지기술연구원 온실가스연구실) ;
  • 김영은 (한국에너지기술연구원 온실가스연구실) ;
  • 윤여일 (한국에너지기술연구원 온실가스연구실) ;
  • 남성찬 (한국에너지기술연구원 온실가스연구실)
  • Received : 2014.01.28
  • Accepted : 2014.11.30
  • Published : 2015.02.01

Abstract

Absorption characteristics of 2-methylpiperidine (2MPD), 3-methylpiperidine (3MPD) and 4-methylpiperidine (4MPD) absorbents were studied by a vapor-liquid equilibrium (VLE) apparatus and a differential reaction calorimeter (DRC). Using a VLE apparatus, the $CO_2$ loading capacity of each absorbent was estimated. After reaching the absorption equilibrium, nuclear magnetic resonance spectroscopy (NMR) had been conducted to characterize the species distribution of the ($H_2O$-piperidine-$CO_2$) system. Using a DRC, the reaction of heat was confirmed in accordance with the absorption capacity. The unique characteristics of 2MPD, 3MPD and 4MPD absorbents appeared by the position of methyl group. The 2MPD possessing the methyl group at the ortho position showed its hindrance effect during the absorption process; however, piperidine derivatives possessing the meta position and para position did not show its characteristics in $H_2O$-piperidine-$CO_2$ system.

본 연구에서는 기-액 평형장치와 반응열 측정장치를 이용하여 2-methylpiperidine (2MPD), 3-methylpiperidine (3MPD), 4-methylpiperidine (4MPD) 흡수제의 이산화탄소 흡수특성을 연구하였다. 기-액 평형장치를 이용하여 각 흡수제의 이산화탄소 흡수능을 알아보았고, 흡수평형 후의 흡수액을 핵자기공명장치(nuclear magnetic resonance spectroscopy: NMR)로 분석하여 종 형성을 확인하였다. 추가적으로 반응열 측정장치를 이용하여 흡수능에 따른 반응열을 제시하였다. 실험결과 2MPD, 3MPD, 4MPD 흡수제는 작용기 위치에 따라 다른 특성을 나타내었다. Ortho 위치에 메틸기를 가진 2MPD는 입체장애효과로 인하여 흡수반응에서 특이성이 나타났으나 3MPD와 4MPD는 ($H_2O$-piperidine-$CO_2$) 시스템에서 반응 특이성이 나타나지 않았다.

Keywords

References

  1. Thiruvenkatachari, R., Su, S., An, H. and Yu, X. X., "Post Combustion $CO_2$ Capture by Carbon Fiber Monolithic Adsorbents," Prog. Energy Combust. Sci., 35, 438-455(2009). https://doi.org/10.1016/j.pecs.2009.05.003
  2. Wall, T. F., "Combustion Processes for Carbon Capture," Proc. Combust. Inst., 31, 31-47(2007). https://doi.org/10.1016/j.proci.2006.08.123
  3. UME, C. S. and Alper, E., "Reaction Kinetics of Carbon Dioxide with 2-amino-2-hydroxymethyl-1,3-propanediol in Aqueous Solution Obtained from the Stopped Flow Method," Turk. J. Chem., 36, 427-435(2012).
  4. Yu, C. H., Huang, C. H. and Tan, C. S., "A Review of $CO_2$ Capture by Absorption and Adsorption," Aerosol Air Qual. Res., 12, 745-769(2012).
  5. Wang, M., Lawal, A., Stephenson, P., Sidders, J., Ramshaw, C. and Yeung, H., "Post-combustion $CO_2$ Capture with Chemical Absorption: A State-of-the-art Review," Chem. Eng. Res. Des., 89, 1609-1624(2011). https://doi.org/10.1016/j.cherd.2010.11.005
  6. Cho, Y. M., Nam, S. C., Yoon, Y. I., Moon, S. J. and Beak, I. H., "Degradation of Aqueous Monoethanolamine Absorbent," Appl. Chem. Eng., 21, 195-199(2010).
  7. Lee, J. H., Kwak, N. S., Lee, I. Y., Jang, K. R., Jang, S. G., Lee, K. J. and Han, G. S., "Test Bed Studies with Highly Efficient Amine $CO_2$ Solvent (Kosol-4)," Korean Chem,. Eng. Res., 51, 267-271 (2013). https://doi.org/10.9713/kcer.2013.51.2.267
  8. Jin, Y. R., Jung, Y. H., Park, S. J. and Baek, I. H., "Study of $CO_2$ Absorption Characteristic and Synthesis of 1-(2-methoxyethyl)-3-methylimindazolium Methanesulfonate Ionic Liquid," Korean Chem,. Eng. Res., 50, 35-40(2012). https://doi.org/10.9713/kcer.2012.50.1.035
  9. Mores, P., Rodriguez, N., Scenna, N. and Mussati, S., "$CO_2$ Capture in Power Plants: Minimization of the Investment and Operating Cost of the Post-combustion Process Using MEA Aqueous Solution," Inter. J. Greenhouse Gas Control., 10, 148-163(2012). https://doi.org/10.1016/j.ijggc.2012.06.002
  10. Stephanie, A. F., Jason, D. and Rochelle, G. T., "Degradation of Aqueous Piperazine in Carbon Dioxide Capture," Inter. J. Greenhouse Gas Control., 4, 756-761(2010). https://doi.org/10.1016/j.ijggc.2010.03.009
  11. Conway, W., Wang, X., Fernandes, D., Burns, R., Lawrance, G., Puxty, G. and Maeder, M., "Toward Rational Design of Amine Solutions for PCC Applications: The Kinetics of the Reaction of $CO_2$ (aq) with Cyclic and Secondary Amines in Aqueous Solution," Environ. Sci. Technol., 46, 7422-7429(2012). https://doi.org/10.1021/es300541t
  12. Xie, H. B., Zhou, Y., Zhang, Y. and Johnson, J. K., "Reaction Mechanism of Monoethanolamine with $CO_2$ in Aqueous Solution from Molecular," J. Phys. Chem., 114, 11844-11852(2010). https://doi.org/10.1021/jp107516k
  13. Caplow, M., "Kinetics of Carbamate Formation and Breakdown," J. Am. Chem. Soc., 90, 6795-6803(1969).
  14. Danckwerts, P. V., "The Reaction of $CO_2$ with Ethanolamines," Chem. Eng. Sci., 34, 443-446(1979). https://doi.org/10.1016/0009-2509(79)85087-3
  15. Prakash, D., Vaidya, E. and Kenig, Y., "$CO_2$-Alkanolamine Reaction Kinetics: A Review of Recent Studies," Chem. Eng. Technol., 30, 1467-1474(2007). https://doi.org/10.1002/ceat.200700268
  16. Kim, Y. E., Nam, S. C., Lee, Y. T. and Yoon, Y. I., "Study of $CO_2$ Absorption Characteristics in Aqueous $K_2CO_3$ solution with Homopiperazine," Appl. Chem. Eng., 21, 284-290(2010).
  17. Astarita, G., Savage, D. W. and Bisio, A., "Gas Treating with Chemical Solvents," J. Wiley., New York. 1983.
  18. Mazinani, S., Samsami, A., Jahanmiri, S. and Sardarian, A., "Experimental Study of Carbon Dioxide Solubility in Aqueous Solutions of Citric Acid at $CO_2$ Low Partial Pressures," Chemical Engineering Transactions, 21, 205-210(2010).
  19. Mu oz, D. M., Portugal, A. F., Lozano, A. E. de la Campa, J. G. and de Abajo, J., "New Liquid Absorbents for the Removal of $CO_2$ from Gas Mixtures," Energy & Environmental Science., 2, 883-891(2009). https://doi.org/10.1039/b901307e
  20. Nogent, H. and Le Tacon, X., "The Differential Reaction Calorimeter: a Simple Apparatus to Determine Reaction Heat, Heat Transfer Value and Heat Capacity," J. Loss Prev. Process Ind., 15, 445-448(2002). https://doi.org/10.1016/S0950-4230(02)00053-0
  21. Nogent, H. and Le Tacon, X., "The Differential Reaction Calorimeter: Examples of Use," J. Loss Prev. Process Ind., 16, 133-139(2003). https://doi.org/10.1016/S0950-4230(02)00109-2
  22. Sartori, G. and Savage, D. W., "Sterically Hindered Amines for Carbon Dioxide Removal from Gases," Ind. Eng. Chem. Fundam., 22, 239-249(1983). https://doi.org/10.1021/i100010a016
  23. Astarita, G., Marrucci, G. and Gioia, F., "The Influence of Carbonation Ratio and Total Amine Concentration on Carbon Dioxide Absorption in Aqueous Monoethanolamine Solutions," Chem. Eng. Sci., 19, 99-103(1964).
  24. Jiang, H., Zhang, S. and Xu, Y., "Molecular Complex Piperidine-$CO_2$," African. J. Pure. Appl. Chem., 3, 126-130(2009).
  25. Robinson, K., McCluskey, A. and Attalla, M., "An FTIR Spectroscopic Study on the Effect of Molecular Structural Variation on the $CO_2$ Absorption Characteristics of Heterocyclic Amines," Chem. Phys. Chem., 12, 1088-1099(2011). https://doi.org/10.1002/cphc.201001056
  26. Oexmann, J. and Kather, A., "Minimising the Regeneration Heat Duty of Post-combustion $CO_2$ Capture by Wet Chemical Absorption: The Misguided Focus on Low Heat of Absorption Solvents," Inter. J. Greenhouse Gas Control., 4, 36-43(2010). https://doi.org/10.1016/j.ijggc.2009.09.010

Cited by

  1. Chemical Absorption of Carbon Dioxide Using Aqueous Piperidine Derivatives vol.40, pp.12, 2017, https://doi.org/10.1002/ceat.201700375
  2. 에폭사이드와 암모니아의 반응을 이용한 합성아민의 이산화탄소 흡수연구 vol.28, pp.5, 2015, https://doi.org/10.7316/khnes.2017.28.5.561
  3. 고리형 아민과 이산화탄소의 반응에서 온도와 흡수능이 반응열에 미치는 영향 vol.29, pp.5, 2015, https://doi.org/10.7316/khnes.2018.29.5.530
  4. Carbamate Formation in the System (2-Methylpiperidine + Carbon Dioxide) by Raman Spectroscopy and X-ray Diffraction vol.122, pp.48, 2015, https://doi.org/10.1021/acs.jpcb.8b08253