DOI QR코드

DOI QR Code

Modeling of Multicomponent Mixture Separation Processes Using Hollowfiber Membrane

중공사막을 이용하는 다성분 혼합물 분리공정의 모델링

  • Kim, Sin-Ah (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Jin-Kuk (Department of Chemical Engineering, Hanyang University) ;
  • Lee, Young Moo (WCU Department of Energy, Hanyang University) ;
  • Yeo, Yeong-Koo (Department of Chemical Engineering, Hanyang University)
  • Received : 2014.05.30
  • Accepted : 2014.08.19
  • Published : 2015.02.01

Abstract

So far, most of research activities on modeling of membrane separation processes have been focused on binary feed mixture. But, in actual separation operations, binary feed is hard to find and most separation processes involve multicomponent feed mixture. In this work models for membrane separation processes treating multicomponent feed mixture are developed. Various model types are investigated and validity of proposed models are analysed based on experimental data obtained using hollowfiber membranes. The proposed separation models show quick convergence and exhibit good tracking performance.

지금까지의 분리막 공정 모델링에 대한 연구는 주로 2성분계 원료의 분리공정에 집중되어 왔다. 실제 운전에 있어서는 2성분계 혼합물은 매우 드물며 다성분계 혼합물이 대부분이므로 막분리 공정의 설계를 위해서는 다성분계 막분리 공정에 대한 모델개발이 필수적이다. 본 연구에서는 중공사막을 이용하는 분리막 공정에서 다성분 혼합물 원료에 대한 분리공정 모델링을 수행하였다. 다양한 형태의 다성분 공정모델을 구현하였으며 실험결과를 이용하여 모델의 정확도 및 신뢰도를 조사하였다. 개발된 모델들은 원료 흐름의 유입조건과 다양한 운전조건에 대하여 안정적이고 실험 데이터에 근접한 모사결과를 보여 주었다.

Keywords

References

  1. Weller, S., Steiner and W. A., "Separation of Gases by Fractional Permeation through Membranes," J. Appl. Phys, 21, 279(1950). https://doi.org/10.1063/1.1699653
  2. Weller, S., Steiner and W. A., "Engineering Aspects of Separation of Gases," Chem. Eng. Prog, 46, 585(1950).
  3. Blaisdell, C. T. and Kammermeyer, K., "Counter-current and Cocurrent Gas Separation," Chem. Eng. Sci, 28, 1249-1255(1973). https://doi.org/10.1016/0009-2509(73)80077-6
  4. Stern, S. A. and Wang, S. C., "Counter-current and Co-current Gas Separation in a Permeate Stage. Comparison of Computation Methods," J. Membr. Sci., 4, 141-148(1978). https://doi.org/10.1016/S0376-7388(00)83290-1
  5. Rautenbach, R. and Dahm, W., "Simplified Calculation of Gas-Permeation Hollow-Fiber Modules for the Separation of Binary Mixtures," J. Membr. Sci., 28, 319-327(1986). https://doi.org/10.1016/S0376-7388(00)82042-6
  6. Krovvidi, K. R., Kovvali, A. S., Vemury, S. and Khan, A. A., "Approximate Solutions for Gas Permeators Separating Binary Mixtures," J. Membr. Sci., 66, 103-118(1992). https://doi.org/10.1016/0376-7388(92)87001-E
  7. Shindo, Y., Hakuta, T. and Yoshitome, H., "Calculation Methods for Multicomponent Gas Separation by Permeation, " Sep. Sci. Technol., 20(5&6), 445-459(1985). https://doi.org/10.1080/01496398508060692
  8. Shindo, Y., Itoh, N. and Haraya, K., "A Theoretical Analysis of Multicomponent Gas Separation by Means of a Membrane with Perfect Mixing," Sep. Sci. Technol., 24(7&8), 599-616(1989). https://doi.org/10.1080/01496398908049794
  9. Li, K., Acharya, D. R. and Hughes, R., "Mathematical Modelling of Multicomponent Membrane Permeators," J. Membr. Sci., 52, 205-219(1990). https://doi.org/10.1016/S0376-7388(00)80486-X
  10. McCandless, F. P., "Iterative Solution of Multicomponent Permeator Model Equations," J. Membr. Sci., 48, 115-122(1990). https://doi.org/10.1016/S0376-7388(00)80800-5
  11. Kovvali, A. S., Vemury, S., Krovvidi, K. R. and Khan, A. A., "Models and Analyses of Membrane Gas Permeators," J. Membr. Sci., 73, 1-23(1992). https://doi.org/10.1016/0376-7388(92)80182-J
  12. Kovvali, A. S., Vemury, S. and Admassu, W., "Modeling of Multicomponent Countercurrent Gas Permeators," Ind. Eng. Chem. Res., 33, 896-903(1994). https://doi.org/10.1021/ie00028a016
  13. Chen, H., Jiang, G. and Xu, R., "An approximate Solution for Countercurrent Gas Permeation Separating Multicomponent Mixtures," J. Membr. Sci., 95, 11-19(1994). https://doi.org/10.1016/0376-7388(94)85024-0
  14. Davis, R. A., "Solution Method for Countercurrent Plug Flow Models of Multicomponent Gas Separation by Permeation," Sep. Sci. Technol., 40, 3017-3031(2005). https://doi.org/10.1080/01496390500385012
  15. Coker, D. T. and Freeman, B. D., "Modeling Multicomponent Gas Separation Using Hollow-Fiber Membrane Contactors," AIChE J., 44, No.6(1998).
  16. Katoh, T., Tokumura, M., Yoshikawa, H. and Kawase, Y., "Dynamic Simulation of Multicomponent Gas Separation by Hollow-Fiber Membrane Module: Nonideal Mixing Flows in Permeate and Residue sides Using the Tanks-in-Series Model," Sep. Purif. Technol., 76, 362-372(2011). https://doi.org/10.1016/j.seppur.2010.11.006
  17. Qi, R. and Henson, M. A., "Membrane System Design for Multicomponent Gas Mixtures via Mixed-Interer Nonlinear Programming," Comput. Chem. Eng., 24, 2719-2737(2000). https://doi.org/10.1016/S0098-1354(00)00625-6
  18. Kaldis, S. P., Kapantaidakis, G. C. and Sakellaropoulos, G. P., "Simulation of multicomponent Gas Separation in a Hollow Fiber Membrane by Orthogonal Collocation- Hydrogen Recovery From Refinery Gases," J. Membr. Sci., 173, 61-71(2000). https://doi.org/10.1016/S0376-7388(00)00353-7
  19. Khalilpour, R., Abbas, A., Lai, Z. and Pinnau, I., "Modeling and Parametric Analysis of Hollow Fiber Membrane System for Carbon Capture from Multicomponent Flue Gas, " AIChE J., 58, No.5(2012).
  20. Hussain, A. and Hogg, M. B., "A Feasibility Study of $CO_2$ Capture from Flue Gas by a Facilitated Transport Membrane," J. Membr. Sci., 359, 140-148(2010). https://doi.org/10.1016/j.memsci.2009.11.035
  21. Choi, J. H., Youn, P. S., Kim, K. C., Yi, C. K., Jo, S. H., Ryu, H. J. and Park, Y. C., "A Model on a Bubbling Fluidized Bed Process for $CO_2$ Capture from Flue Gas," Korean Chem. Eng. Res., 50(3), 516-521(2012). https://doi.org/10.9713/kcer.2012.50.3.516
  22. Park, H. B., Jung, C. H., Lee, Y. M., Hill, A. J., Pas, S. J. et al., "Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions," Science, 318, 254-258(2007). https://doi.org/10.1126/science.1146744
  23. Jung, H. J., Han, S. H., Lee, Y. M. and Yeo, Y. K., "Modeling and Simulation of Hollow Fiber $CO_2$ Separation Modules," Korean J. Chem. Eng., 28(7), 1497-1504(2011). https://doi.org/10.1007/s11814-010-0530-y