Abstract
Two basic FFT(Fast Fourier Transform) algorithms are the DIT(Decimation-In-Time) and the DIF (Decimation-In-Frequency). In spite of the advantage of the DIT algorithm is to generate a sequential output, various structures have not been made. In this paper, a new DIT Radix-4 FFT butterfly structure are proposed and implemented using Verilog coding. Through synthesis, it is shown that the 64-point FFT is implemented by 6.78 million gates. Since the proposed FFT structure has the advantage of a sequential output, it can be used in OFDM communication SoC(System on a Chip) which need a high speed FFT output.
FFT(Fast Fourier Transform) 알고리즘에는 DIT(Decimation-In-Time)와 DIF(Decimation-In-Frequency)가 있다. DIF 알고리즘은 Radix-2/4/8 등의 다양한 종류와 그 구현 방법이 개발되어 사용되고 잇으나, DIT 알고리즘은 순차적인 출력을 낼 수 있는 장점이 있음에도 불구하고 다양한 알고리즘이 연구되지 못하였다. 이 논문에서는 새로운 DIT Radix-4 FFT의 나비연산기(butterfly) 구조를 제안하고 검증하였다. 제안 구조를 사용하여 64-point FFT 구조를 설계하고 Verilog로 코딩하여 구현함으로써 제안 구조의 효용성을 입증하였다. 48개의 곱셈기를 사용하여 합성하였으며 678만 게이트 수를 나타내었다. 따라서 제안된 DIT Radix-4 FFT 구조는 순차적인 FFT 출력을 필요로 하는 OFDM 통신용 SoC(System on a Chip)에 사용될 수 있을 것이다.