DOI QR코드

DOI QR Code

A New DIT Radix-4 FFT Structure and Implementation

새로운 DIT Radix-4 FFT 구조 및 구현

  • Jang, Young-Beom (Department of Information and Communication Engineering, Sangmyung University) ;
  • Lee, Sang-Woo (Department of Information and Communication Engineering, Sangmyung University)
  • 장영범 (상명대학교 정보통신공학과) ;
  • 이상우 (상명대학교 정보통신공학과)
  • Received : 2014.12.02
  • Accepted : 2015.01.08
  • Published : 2015.01.31

Abstract

Two basic FFT(Fast Fourier Transform) algorithms are the DIT(Decimation-In-Time) and the DIF (Decimation-In-Frequency). In spite of the advantage of the DIT algorithm is to generate a sequential output, various structures have not been made. In this paper, a new DIT Radix-4 FFT butterfly structure are proposed and implemented using Verilog coding. Through synthesis, it is shown that the 64-point FFT is implemented by 6.78 million gates. Since the proposed FFT structure has the advantage of a sequential output, it can be used in OFDM communication SoC(System on a Chip) which need a high speed FFT output.

FFT(Fast Fourier Transform) 알고리즘에는 DIT(Decimation-In-Time)와 DIF(Decimation-In-Frequency)가 있다. DIF 알고리즘은 Radix-2/4/8 등의 다양한 종류와 그 구현 방법이 개발되어 사용되고 잇으나, DIT 알고리즘은 순차적인 출력을 낼 수 있는 장점이 있음에도 불구하고 다양한 알고리즘이 연구되지 못하였다. 이 논문에서는 새로운 DIT Radix-4 FFT의 나비연산기(butterfly) 구조를 제안하고 검증하였다. 제안 구조를 사용하여 64-point FFT 구조를 설계하고 Verilog로 코딩하여 구현함으로써 제안 구조의 효용성을 입증하였다. 48개의 곱셈기를 사용하여 합성하였으며 678만 게이트 수를 나타내었다. 따라서 제안된 DIT Radix-4 FFT 구조는 순차적인 FFT 출력을 필요로 하는 OFDM 통신용 SoC(System on a Chip)에 사용될 수 있을 것이다.

Keywords

References

  1. R. Sarmiento, V. D. Armas, J. F. Lopez, J. A. Montiel-Nelson, and A. Nunez, "A CORDIC proce ssor for FFT computation and its implementation using gallium arsenide technology", IEEE Trans. on VLSI Systems, vol. 6, No. 1, pp. 18-30, Mar. 1998. DOI: http://dx.doi.org/10.1109/92.661241
  2. J. Lee and H. Lee, "A high-Speed 2-Parallel Radix-24 FFT/IFFT processor for MB-OFDM UWB Systems", IEICE Trans. on Fundamentals, vol. E91-A, No. 4, pp. 1206- 1211, April, 2008. DOI: http://dx.doi.org/10.1093/ietfec/e91-a.4.1206
  3. H. J. Kim and Y. B. Jang, "Low-area FFT processor structure using radix-42 algorithm", Journal of IEEK, vol. 49-SD, No. 3, pp. 8-14, Mar. 2012.
  4. In-Gul Jang and Jin-Gyun Chung, "Low-power FFT design for NC-OFDM in cognitive radio systems", Journal of IEEK, vol. 48-TC, No. 6, pp. 28-33, Jun. 2011. DOI: http://dx.doi.org/10.1109/ISCAS.2011.5938099
  5. Eun Ji Kim and Myung Hoon Sunwoo, "High speed 8-parallel FFT/IFFT processor using efficient pipeline architecture and scheduling scheme", Journal of KICS, vol. 36, No. 3, pp. 175-182, Mar. 2011. DOI: http://dx.doi.org/10.7840/KICS.2011.36C.3.175
  6. M. Bekooij, J. Huisken, and K. Nowak, "Numerical accuracy of Fast Fourier Transforms with CORDIC arithmetic", Journal of VLSI Signal Processing, vol. 25, No. 2, pp. 187-193, Jun. 2000. DOI: http://dx.doi.org/10.1023/A:1008179225059
  7. J. Y. Oh, J. S. Cha, S. K. Kim, and M. S. Lim, "Implementation of Orthogonal Frequency Division Multiplexing using radix-N Pipeline Fast Fourier Transform(FFT) Processor", Jpn. J. Appl. Phys., vol. 42, No. 4B, pp. 1-6, April, 2003. DOI: http://dx.doi.org/10.1143/JJAP.42.2176
  8. Beven M. Baas, "A 9.5mW 330us 1024-point FFT Processor", IEEE Custom Integrated Circuits Conference, pp. 127-130, 1998.
  9. K. Rao, D. N. Kim, and J. J. Hwang, "Fast Fourier Transform - Algorithms and Applications" Springer, 2011.
  10. Young Beom Jang and Sang Woo Lee, "Low-power butterfly structure for DIT Radix-4 FFT implementation", Journal of KICS, vol. 38A, No. 12, pp. 1145-1147, Dec. 2013. DOI: http://dx.doi.org/10.7840/kics.2013.38A.12.1145

Cited by

  1. New DIT Radix-8 FFT Butterfly Structure vol.16, pp.8, 2015, https://doi.org/10.5762/KAIS.2015.16.8.5579