DOI QR코드

DOI QR Code

Temperature Dependent Current Transport Mechanism in Graphene/Germanium Schottky Barrier Diode

  • Khurelbaatar, Zagarzusem (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University) ;
  • Kil, Yeon-Ho (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University) ;
  • Shim, Kyu-Hwan (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University) ;
  • Cho, Hyunjin (Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Kim, Myung-Jong (Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology) ;
  • Kim, Yong-Tae (Semiconductor Materials and Device Laboratory, Korea Institiute of Science and Technology) ;
  • Choi, Chel-Jong (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University)
  • Received : 2014.08.17
  • Accepted : 2015.01.02
  • Published : 2015.02.28

Abstract

We have investigated electrical properties of graphene/Ge Schottky barrier diode (SBD) fabricated on Ge film epitaxially grown on Si substrate. When decreasing temperature, barrier height decreased and ideality factor increased, implying their strong temperature dependency. From the conventional Richardson plot, Richardson constant was much less than the theoretical value for n-type Ge. Assuming Gaussian distribution of Schottky barrier height with mean Schottky barrier height and standard deviation, Richardson constant extracted from the modified Richardson plot was comparable to the theoretical value for n-type Ge. Thus, the abnormal temperature dependent Schottky behavior of graphene/Ge SBD could be associated with a considerable deviation from the ideal thermionic emission caused by Schottky barrier inhomogeneities.

Keywords

References

  1. V. Janardhanam, K. Moon, J. S. Kim, M. S. Yi, K. S. Ahn, and C. J. Choi, "Microstructural Evolution and Electrical Characteristics of Er-Germanides Formed on Ge Substrate," J. Electrochem. Soc, Vol.158, No.8, pp.H751-H755, May., 2011. https://doi.org/10.1149/1.3594746
  2. A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, "Fermi-level pinning and charge neutrality level in germanium," Appl. Phys. Lett, Vol.89, No.1 pp.252110-1-252110-2, July., 2006. https://doi.org/10.1063/1.2410241
  3. K. Martens, R. Rooyackers, A. Firrincieli, B. Vincent, R. Loo, B. De Jaeger, M. Meuris, P. Favia, H. Bender, B. Douhar, W. Vandervorst, E. Simoen, M. Jurczak, D. J. Wouters, and J. A. Kittl, "Contact Resistivity and Fermi-Level Pinning in N-Type Ge Contacts with Epitaxial Si-Passivation," Appl. Phys. Lett, Vol.98, pp.013504(1)-013504(3), January., 2011.
  4. H. W. Jung, W. S. Jung, and J. H. Park, "Hydrazine Based Fermi-Level Depinning Process on Metal/Germanium Schottky Junction," IEEE Electron Device Lett, Vol.34, No.5, pp.599-601, May., 2013. https://doi.org/10.1109/LED.2013.2253759
  5. J. R. Wu, Y. H. Wu, C. Y. Hou, M. L. Wu, C. C. Lin, and L. L. Chen, "Impact of Fluorine Treatment on Fermi-Level Depinning for Metal/Germanium Schottky Junctions," Appl. Phys. Lett, Vol.99, pp.253504-1-253504-3, Dec., 2011. https://doi.org/10.1063/1.3666779
  6. K. Ikeda, Y. Yamashita, and N. Sugiyama, "Modulation of NiGe/Ge Schottky Barrier Height by Sulfur Segregation During Ni Germanidation," Appl. Phys. Lett, Vol.88, pp.152115-1-152115-3, May., 2006. https://doi.org/10.1063/1.2191829
  7. T. Nishimura, K. Kita, and A. Toriumi, "A significant Shift of Schottky Barrier Heights at Strongly Pinned Metal/Germanium Interface by Inserting an Ultra-Thin Insulating Film," Appl. Phys. Express, Vol.1, pp.051406-1-051406-3, May., 2008. https://doi.org/10.1143/APEX.1.051406
  8. Z. Khurelbaatar, Y. H. Kil, H. J. Yun, K. H. Shim, J. T. Nam, K. S. Kim, S. K. Lee, C. J. Choi, "Modification of Schottky Barrier Properties of Au/N-type Ge Schottky Barrier Diode Using Monolayer Graphene Interlayer," J. Alloys. Compd Vol. 614, pp.323-329, June., 2014. https://doi.org/10.1016/j.jallcom.2014.06.132
  9. L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, and L. B. Luo, "Monolayer Graphene/Germanium Schottky Junction as High Performance, Self Driven Infrared Light Photodetector," ACS Appl. Mater. Interfaces, Vol.5, pp.9362-9366, Sep., 2013. https://doi.org/10.1021/am4026505
  10. M. Jutzi, M. Berroth, G. WOhl, M. Oehme, and E. Kasper, "Ge-on-Si Vertical Incidence Photodiodes with 39-GHz Bandwidth," IEEE Photon. Technol. Lett, Vol.17, No.7, pp.1510-1512, July., 2005. https://doi.org/10.1109/LPT.2005.848546
  11. Z. Huang, J. Oh, S. K. Banerjee, and J. C. Campbell, "Effectiveness of SiGe Buffer Layers in Reducing Dark Currents of Ge-on-Si Photo-detectors," IEEE Journal of Quantum Electronics, Vol.43, No.3, pp.238-242, March., 2007. https://doi.org/10.1109/JQE.2006.890395
  12. W. Hu, B. Cheng, C. Xue, S. Su, H. Xue, Y. Zuo, and Q. Wang, "Ge-on-Si for Si-based Integrated Materials and Photonic Devices," Front. Optoelectron, Vol.5, No.1, pp.41-50, Nov., 2012. https://doi.org/10.1007/s12200-012-0200-2
  13. J. Michel, J. Liu, and L. C. Kimerling, "High Performance Ge-on-Si Photodetectors," Nature Photonics, Vol.4, pp.527-534, July., 2010. https://doi.org/10.1038/nphoton.2010.157
  14. S. S. Naik and V. R. Reddy, "Temperature Dependency and Current Transport Mechanism of Pd/V/N-type InP Schottky Rectifier," Adv. Mater. Lett, Vol.3, No.3, pp.188-196, Feb., 2012. https://doi.org/10.5185/amlett.2012.1316
  15. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, Vol.324, pp.1312-1314, June., 2009. https://doi.org/10.1126/science.1171245
  16. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A. K. Geim, "Raman spectrum of graphene and graphene layers," Phys. Rev. Lett, Vol.97, No.18, pp.187401-1-187401-4, Nov., 2006. https://doi.org/10.1103/PhysRevLett.97.187401
  17. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts (Clarendon Press, Oxford; U.K.,1988) 2nd ed., p. 39.
  18. S. M. Sze: Physics of Semiconductor Devices (Wiley, New York; USA., 1981) 2nd ed., p. 90.
  19. G. P. Ru, R. L. V. Meirhaeghe, S. Forment, Y. L. Jiang, Q. S. Zhu, B. Z. Li, "Voltage Dependence of Effective Barrier Height Reduction in Inhomogeneous Schottky Diodes" Solid State Electron, Vol.49, No.4, pp.606-611, Apr., 2005. https://doi.org/10.1016/j.sse.2004.12.005
  20. A. Gumus, A. Turut, and N. Yalcin, "Temperature Dependent Barrier Characteristics of CrNiCo Alloy Schottky Contacts on N-type Molecular-Beam Epitaxy GaAs," J. Appl. Phys, Vol.91, No.1, pp. 245-250, January., 2002. https://doi.org/10.1063/1.1424054
  21. O. Pakma, N. Serin, T. Serin, and S. Altindal, "The Double Gaussian Distribution of Barrier Heights in Al/TiO2/p-Si (Metal-Insulator-Semiconductor) Structures at Low Temperatures", J. Appl. Phys. Vol.104, No.1, pp.14501-1-14501-6, July., 2008. https://doi.org/10.1063/1.2952028
  22. S. Karatas, S. Altindal, A. Turut, and A. Ozmen "Temperature Dependence of Characteristic Parameters of the H-terminated Sn/p-Si (100) Schottky Contacts," Appl. Surf. Sci, Vol.217, No.1, pp.250-260, July., 2003. https://doi.org/10.1016/S0169-4332(03)00564-6
  23. J. J. Zeng and Y. J. Lin, "Schottky Barrier Inhomogeneity for Graphene/Si-Nanowire Arrays/Ntype Si Schottky Diodes" J. Appl. Phys, Vol.104, No.3, pp.133506-1-133506-4, Apr., 2014.
  24. C. Yim, N. McEvoy, and G. S. Duesberg, "Characterization of Graphene-Silicon Schottky Barrier Diodes Using Impedance Spectroscopy," Appl. Phys. Lett, Vol.103, pp.193106-1-193106-5, Nov., 2013. https://doi.org/10.1063/1.4829140
  25. Y. Zhang, Y. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, "Origin of Spatial Charge Inhomogeneity in Graphene," Nature Physics, Vol.5, pp.722-726, Dec., 2009. https://doi.org/10.1038/nphys1365
  26. D. Sinha and J. U. Lee, "Ideal Graphene/Silicon Schottky Junction Diodes," Nano Lett, Vol.14, pp.4660-4664, July., 2014 https://doi.org/10.1021/nl501735k
  27. Y. P. Song, R. L. Van Meirhaeghe, W. H. Laflere, and F. Cardon, "On the Difference in Apparent Barrier Height as Obtained from Capacitance-Voltage and Current-Voltage Temperature Measurements on Al/p-InP Schottky Barriers," Solid State Electron, Vol.29, No.6, pp.633-638, June., 1986. https://doi.org/10.1016/0038-1101(86)90145-0
  28. J. H. Werner and H. H. Guttler, "Barrier inhomogeneities at Schottky contacts," J. Appl. Phys, Vol.69, No.3, pp. 1522-1533, Feb., 1991. https://doi.org/10.1063/1.347243
  29. D. Korucu and T. S. Mammadov, "Temperature Dependent Current Conduction Mechanisms in Au/n-InP Schottky Barrier Diodes (SBDs)," J. Optoelectron. Adv. Mater, Vol.102, No.11, pp.41-48, Feb., 2012.
  30. H. Zhong, Z. Liu, G. Xu, Y. Fan, J. Wang, X. Zhang, L. Liu, K. Xu, and H. Yang, "Self-Adaptive Electronic Contact Between Graphene and Semiconductors," Appl. Phys. Lett, Vol.100, No.12, pp.122108-1-122108-4, March., 2012. https://doi.org/10.1063/1.3696671
  31. X. Li , H. Zhu, K. Wang, A. Cao, J. Wei,C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, "Graphene-on-Silicon Schottky Junction Solar Cells," Adv. Mater, Vol.22, No.25, pp.2743-2748, Apr., 2010. https://doi.org/10.1002/adma.200904383
  32. S. Tongay, M. Lemaitre, X. Miao, B. Gila, B. R. Appleton, and A. F. Hebard, "Rectification at Graphene-Semiconductor Interfaces: Zero Gap Semiconductor Based Diodes," Phys. Rev. X 2, 011002, March., 2012.
  33. N. Yildirim and A. Turut, "A Theoretical Analysis Together with Experimental Data of Inhomogeneous Schottky Barrier Diodes," Microelectron Eng, Vol.86, pp.2270-2274, Apr., 2009. https://doi.org/10.1016/j.mee.2009.04.003
  34. T. Tunc, I. Dokme, S. Altindal, and I. Uslu, "Temperature Dependent Current-Voltage (I-V) Characteristics of Au/n-Si (111) Schottky Barrier Diodes (SBDs) with Polyvinyl Alcohol (Co, Ni - Doped) Interfacial Layer," Optoelectron. Adv. Mater. Rapid Commun, Vol.4, No.7, pp.947-950, July., 2010.

Cited by

  1. Photodetection in Hybrid Single-Layer Graphene/Fully Coherent Germanium Island Nanostructures Selectively Grown on Silicon Nanotip Patterns vol.8, pp.3, 2016, https://doi.org/10.1021/acsami.5b10336
  2. THE CHARACTERISTIC DIODE PARAMETERS IN Ti/p-InP CONTACTS PREPARED BY DC SPUTTERING AND EVAPORATION PROCESSES OVER A WIDE MEASUREMENT TEMPERATURE vol.24, pp.04, 2017, https://doi.org/10.1142/S0218625X17500524
  3. Theory of thermionic emission from a two-dimensional conductor and its application to a graphene-semiconductor Schottky junction vol.112, pp.17, 2018, https://doi.org/10.1063/1.5027271
  4. Current Rectification in a Structure: ReSe2/Au Contacts on Both Sides of ReSe2 vol.14, pp.1, 2019, https://doi.org/10.1186/s11671-018-2843-4