DOI QR코드

DOI QR Code

Improving Nutritional Quality of Cocoa Pod (Theobroma cacao) through Chemical and Biological Treatments for Ruminant Feeding: In vitro and In vivo Evaluation

  • Laconi, Erika B. (Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University) ;
  • Jayanegara, Anuraga (Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University)
  • Received : 2013.12.06
  • Accepted : 2014.10.09
  • Published : 2015.03.01

Abstract

Cocoa pod is among the by-products of cocoa (Theobroma cacao) plantations. The aim of this study was to apply a number of treatments in order to improve nutritional quality of cocoa pod for feeding of ruminants. Cocoa pod was subjected to different treatments, i.e. C (cocoa pod without any treatment or control), CAm (cocoa pod+1.5% urea), CMo (cocoa pod+3% molasses), CRu (cocoa pod+3% rumen content) and CPh (cocoa pod+3% molasses+Phanerochaete chrysosporium inoculum). Analysis of proximate and Van Soest's fiber fraction were performed on the respective treatments. The pods were then subjected to an in vitro digestibility evaluation by incubation in rumen fluid-buffer medium, employing a randomized complete block design (n = 3 replicates). Further, an in vivo evaluation of the pods (35% inclusion level in total mixed ration) was conducted by feeding to young Holstein steers (average body weight of $145{\pm}3.6kg$) with a $5{\times}5$ latin square design arrangement (n = 5 replicates). Each experimental period lasted for 30 d; the first 20 d was for feed adaptation, the next 3 d was for sampling of rumen liquid, and the last 7 d was for measurements of digestibility and N balance. Results revealed that lignin content was reduced significantly when cocoa pod was treated with urea, molasses, rumen content or P. chrysosporium (p<0.01) with the following order of effectiveness: CPh>CAm>CRu>CMo. Among all treatments, CAm and CPh treatments significantly improved the in vitro dry matter and organic matter digestibility (p<0.05) of cocoa pod. Average daily gain of steers receiving CAm or CPh treatment was significantly higher than that of control (p<0.01) with an increase of 105% and 92%, respectively. Such higher daily gain was concomitant with higher N retention and proportion of N retention to N intake in CAm and CPh treatments than those of control (p<0.05). It can be concluded from this study that treatment with either urea or P. chrysosporium is effective in improving the nutritive value of cocoa pod.

Keywords

References

  1. Alemawor, F., V. P. Dzogbefia, E. O. K. Oddoye, and J. H. Oldham. 2009. Effect of Pleurotus ostreatus fermentation on cocoa pod husk composition: Influence of fermentation period and $Mn^{2+}$ supplementation on the fermentation process. Afr. J. Biotechnol. 8:1950-1958.
  2. AOAC. 1995. Official Methods of Analysis. 16th edn. Association of Official Analytical Chemists, Arlington, VA, USA.
  3. Aregheore, E. M. 2002. Chemical evaluation and digestibility of cocoa (Theobroma cacao) byproducts fed to goats. Trop. Anim. Health Prod. 34:339-348. https://doi.org/10.1023/A:1015638903740
  4. Bach, A., S. Calsamiglia, and M. D. Stern. 2005. Nitrogen metabolism in the rumen. J. Dairy Sci. 88(Suppl. 1):E9-21. https://doi.org/10.3168/jds.S0022-0302(05)73133-7
  5. Barahona, R., C. E. Lascano, N. Narvaez, E. Owen, P. Morris, and M. K. Theodorou. 2003. In vitro degradability of mature and immature leaves of tropical forage legumes differing in condensed tannin and non-starch polysaccharide content and composition. J. Sci. Food Agric. 83:1256-1266. https://doi.org/10.1002/jsfa.1534
  6. Bucholtz, H. F. and W. G. Bergen. 1973. Microbial phospholipid synthesis as a marker for microbial protein synthesis in the rumen. Appl. Microbiol. 25:504-513.
  7. Clark, J. H., T. H. Klusmeyer, and M. R. Cameron. 1992. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J. Dairy Sci. 75:2304-2323. https://doi.org/10.3168/jds.S0022-0302(92)77992-2
  8. Conway, E. J. and A. Byrne. 1933. An absorption apparatus for the micro-determination of certain volatile substances. I. The micro-determination of ammonia. Biochem. J. 27:419-429.
  9. Conway, L. K., D. M. Hallford, and S. A. Soto-Navarro. 2012. Effects of wet corn gluten feed and yellow grease on digestive function of cattle fed steam-flaked corn-based finishing diets. Anim. Feed Sci. Technol. 178:20-26. https://doi.org/10.1016/j.anifeedsci.2012.09.003
  10. Cottyn, B. G. and C. V. Boucque. 1968. Rapid method for the gaschromatographic determination of volatile fatty acids in rumen fluid. J. Agric. Food Chem. 16:105-107. https://doi.org/10.1021/jf60155a002
  11. Dashtban, M., H. Schraft, and W. Qin. 2009. Fungal bioconversion of lignocellulosic residues: Opportunities and perspectives. Int. J. Biol. Sci. 5:578-595.
  12. Devendra, C. 1977. The utilization of cocoa pod husk by sheep. Malaysian Agric. J. 51:179-185.
  13. FAOSTAT. 2013. Food and Agriculture Organization of the United Nations. http://faostat3.fao.org/faostat-gateway/go/to/home/E. Accessed March 3, 2014.
  14. Ghorai, S., S. P. Banik, D. Verma, S. Chowdhury, S. Mukherjee, and S. Khowala. 2009. Fungal biotechnology in food and feed processing. Food Res. Int. 42:577-587. https://doi.org/10.1016/j.foodres.2009.02.019
  15. Gold, M. H. and M. Alic. 1993. Molecular biology of the lignindegrading basidiomycete Phanerochaete chrysosporium. Microbiol. Mol. Biol. Rev. 57:605-622.
  16. Jayanegara, A., E. Wina, C. R. Soliva, S. Marquardt, M. Kreuzer, and F. Leiber. 2011. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim. Feed Sci. Technol. 163:231-243. https://doi.org/10.1016/j.anifeedsci.2010.11.009
  17. Kamra, D. N. 2005. Rumen microbial ecosystem. Curr. Sci. 89:124-135.
  18. Karabulut, A., O. Canbolat, H. Kalkan, F. Gurbuzol, E. Sucu, and I. Filya. 2007. Comparison of in vitro gas production, metabolizable energy, organic matter digestibility and microbial protein production of some legume hays. Asian Australas. J. Anim. Sci. 20:517-522.
  19. Karunanandaa, K., G. A. Varga, D. E. Akin, L. L. Rigsby, and D. J. Royse. 1995. Botanical fractions of rice straw colonized by white-rot fungi: changes in chemical composition and structure. Anim. Feed Sci. Technol. 55:179-199. https://doi.org/10.1016/0377-8401(95)00805-W
  20. Kim, Y. I., Y. H. Lee, K. H. Kim, Y. K. Oh, Y. H. Moon, and W. S. Kwak. 2012. Effects of supplementing microbially-fermented spent mushroom substrates on growth performance and carcass characteristics of Hanwoo steers (a field study). Asian Australas. J. Anim. Sci. 25:1575-1581. https://doi.org/10.5713/ajas.2012.12251
  21. Misra, A. K., A. S. Mishra, M. K. Tripathi, R. Prasad, S. Vaithiyanathan, and R. C. Jakhmola. 2007. Optimization of solid state fermentation of mustard (Brassica campestris) straw for production of animal feed by white rot fungi (Ganoderma lucidum). Asian Australas. J. Anim. Sci. 20:208-213.
  22. Owusu-Domfeh, K. 1972. The future of cocoa and its by-products in the feeding of livestock. Ghana J. Agric. Sci. 5:57-64.
  23. Sarnklong, C., J. W. Coneja, W. Pellikaan, and W. H. Hendriks. 2010. Utilization of rice straw and different treatments to improve its feed value for ruminants: A review. Asian Australas. J. Anim. Sci. 23:680-692. https://doi.org/10.5713/ajas.2010.80619
  24. Schiere, J. B. and A. J. Nell. 1993. Feeding of urea treated straw in the tropics. I. A review of its technical principles and economics. Anim. Feed Sci. Technol. 43:135-147. https://doi.org/10.1016/0377-8401(93)90148-D
  25. Singh, D. and S. Chen. 2008. The white-rot fungus Phanerochaete chrysosporium: Conditions for the production of lignindegrading enzymes. Appl. Microbiol. Biotechnol. 81:399-417. https://doi.org/10.1007/s00253-008-1706-9
  26. Smith, O. B. and A. A. Adegbola. 1982. The feeding value of cocoa-pod for cattle. Trop. Anim. Prod. 7:290-295.
  27. Sutikno, A. I. 1997. Cocoa pod for feeding of ruminant livestock. Wartazoa 6:38-43.
  28. Tilley, J. M. A. and R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18:104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  29. Vadiveloo, J., B. Nurfariza, and J. G. Fadel. 2009. Nutritional improvement of rice husks. Anim. Feed Sci. Technol. 151:299-305. https://doi.org/10.1016/j.anifeedsci.2009.03.002
  30. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  31. Van Soest, P. J. 2006. Rice straw, the role of silica and treatments to improve quality. Anim. Feed Sci. Technol. 130:137-171. https://doi.org/10.1016/j.anifeedsci.2006.01.023
  32. Wanapat, M. 2000. Rumen manipulation to increase the efficient use of local feed resources and productivity of ruminants in the tropics. Asian Australas. J. Anim. Sci. 13(Suppl. B):59-67.
  33. Zadrazil, F., D. N. Kamra, O. S. Isikhuemhen, F. Schuchardt, and G. Flachowsky. 1996. Bioconversion of lignocellulose into ruminant feed with white rot fungi- Review of work done at the FAL, Braunschweig. J. Appl. Anim. Res. 10:105-124.
  34. Zain, M. 2009. Substitution of native grass with ammoniated cocoa pod in sheep diet. Media Peternakan 32:47-52.
  35. Zinn, R. A. and F. N. Owens. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can. J. Anim. Sci. 66:157-166. https://doi.org/10.4141/cjas86-017

Cited by

  1. Use of black soldier fly larvae (Hermetia illucens) to substitute soybean meal in ruminant diet: An in vitro rumen fermentation study vol.10, pp.12, 2017, https://doi.org/10.14202/vetworld.2017.1439-1446
  2. Use of Fiber Cracking Technology to Improve the Nutritive Quality of Corn and Sugarcane By-products for Ruminant Feeds vol.17, pp.11, 2018, https://doi.org/10.3923/pjn.2018.568.577
  3. rumen fermentation profiles vol.46, pp.1, 2018, https://doi.org/10.1080/09712119.2018.1485568
  4. Effects of lipid extraction on nutritive composition of winged bean (Psophocarpus tetragonolobus), rubber seed (Hevea brasiliensis), and tropical almond (Terminalia catappa) vol.11, pp.4, 2018, https://doi.org/10.14202/vetworld.2018.446-451
  5. Solid-state fermentation as a tool for methylxanthine reduction and simultaneous xylanase production in cocoa meal vol.11, pp.None, 2015, https://doi.org/10.1016/j.bcab.2017.05.009
  6. Tannin as a feed additive for mitigating enteric methane emission from livestock: meta-analysis from RUSITEC experiments vol.434, pp.None, 2015, https://doi.org/10.1088/1757-899x/434/1/012108
  7. In vitro gas production of legume Bauhinia purpurea, Cassia alata and Macroptilium atropurpureum vol.434, pp.None, 2015, https://doi.org/10.1088/1757-899x/434/1/012118
  8. In vitro rumen fermentation characteristics of ammoniated stover of Samurai 2 sorghum fertilized with different level of Urea vol.251, pp.None, 2015, https://doi.org/10.1088/1755-1315/251/1/012049
  9. Systematic analysis to assess the scientific validity of the international residue limits for caffeine and theophylline in horse-racing vol.185, pp.8, 2015, https://doi.org/10.1136/vr.105404
  10. Challenging the international residue limit concept for feed contaminants in equine doping analytics vol.185, pp.8, 2015, https://doi.org/10.1136/vr.l5134
  11. Optimization and comparison of induction heating and LPG assisted acid pretreatment of cocoa pod for ABE fermentation vol.262, pp.None, 2015, https://doi.org/10.1016/j.fuel.2019.116499
  12. The role of local isolates of Trichoderma sp. as a decomposer in the substrate of cacao pod rind (Theobroma cacao L.) vol.5, pp.4, 2020, https://doi.org/10.3934/agrfood.2020.4.825
  13. The effect of technology on the development and income of goat business in Kulon Progo, Yogyakarta vol.306, pp.None, 2015, https://doi.org/10.1051/e3sconf/202130602039
  14. Effect of dietary black soldier fly larvae (Hermetia illucens) and bioconversion product of cocoa pod husk on performance and hematological profile of sheep vol.1098, pp.6, 2015, https://doi.org/10.1088/1757-899x/1098/6/062058
  15. Evaluation of noni (Morinda citrifolia) leaves and fruits on methane emission and rumen fermentation parameters in vitro vol.788, pp.1, 2015, https://doi.org/10.1088/1755-1315/788/1/012030
  16. Rumen metabolic activities of cacao (Theobroma cacao L.) pod husk fermented with lingzhi mushroom (Ganoderma lucidum) at different concentration and incubation time vol.922, pp.1, 2015, https://doi.org/10.1088/1755-1315/922/1/012038
  17. Evaluating the relationship between in vitro and in situ starch degradation rates vol.283, pp.None, 2022, https://doi.org/10.1016/j.anifeedsci.2021.115175