• Title/Summary/Keyword: Cocoa Pod

Search Result 3, Processing Time 0.016 seconds

Improving Nutritional Quality of Cocoa Pod (Theobroma cacao) through Chemical and Biological Treatments for Ruminant Feeding: In vitro and In vivo Evaluation

  • Laconi, Erika B.;Jayanegara, Anuraga
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.3
    • /
    • pp.343-350
    • /
    • 2015
  • Cocoa pod is among the by-products of cocoa (Theobroma cacao) plantations. The aim of this study was to apply a number of treatments in order to improve nutritional quality of cocoa pod for feeding of ruminants. Cocoa pod was subjected to different treatments, i.e. C (cocoa pod without any treatment or control), CAm (cocoa pod+1.5% urea), CMo (cocoa pod+3% molasses), CRu (cocoa pod+3% rumen content) and CPh (cocoa pod+3% molasses+Phanerochaete chrysosporium inoculum). Analysis of proximate and Van Soest's fiber fraction were performed on the respective treatments. The pods were then subjected to an in vitro digestibility evaluation by incubation in rumen fluid-buffer medium, employing a randomized complete block design (n = 3 replicates). Further, an in vivo evaluation of the pods (35% inclusion level in total mixed ration) was conducted by feeding to young Holstein steers (average body weight of $145{\pm}3.6kg$) with a $5{\times}5$ latin square design arrangement (n = 5 replicates). Each experimental period lasted for 30 d; the first 20 d was for feed adaptation, the next 3 d was for sampling of rumen liquid, and the last 7 d was for measurements of digestibility and N balance. Results revealed that lignin content was reduced significantly when cocoa pod was treated with urea, molasses, rumen content or P. chrysosporium (p<0.01) with the following order of effectiveness: CPh>CAm>CRu>CMo. Among all treatments, CAm and CPh treatments significantly improved the in vitro dry matter and organic matter digestibility (p<0.05) of cocoa pod. Average daily gain of steers receiving CAm or CPh treatment was significantly higher than that of control (p<0.01) with an increase of 105% and 92%, respectively. Such higher daily gain was concomitant with higher N retention and proportion of N retention to N intake in CAm and CPh treatments than those of control (p<0.05). It can be concluded from this study that treatment with either urea or P. chrysosporium is effective in improving the nutritive value of cocoa pod.

Effects of a Powder Formulation of Streptomyces cameroonensis on Growth and Resistance of Two Cocoa Hybrids from Cameroon against Phytophthora megakarya (Causal Agent of Black Pod Disease)

  • Aristide, Dzelamonyuy;Martial, Tene Tayo Paul;Ruth, Ngotcho Ngassam Esther;Grace, Lele Brenda;Ebenezer, Foka Tatiekam;Flore, Magni Pacha Tatiana;Thaddee, Boudjeko
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.160-169
    • /
    • 2022
  • In the present study we evaluated the efficacy of a bioformulation of Streptomyces cameroonensis for control of black pod disease in cocoa and enhancement of seedling growth. The formulation developed using talc powder and cassava starch as carriers showed high shelf-life of 1.07 × 106 CFU/g after six months storage at 4℃. The formulation was tested for inhibition of spore germination in Phytophthora megakarya and showed 100% inhibition at 10% (w/v) of formulation. To determine the efficacy of the formulation, we performed an in planta assay in the greenhouse on two hybrids of cocoa seedlings, the tolerant SNK413 × (♂) T79/467 and the susceptible UPA 134× (♂) SCA 12. Detached leaf assay showed a significant reduction in the disease severity index of about 67% for the tolerant hybrid and 55% for the susceptible hybrid compared to non-treated plants. A significant enhancement in stem length, leaf surface area and root weight was observed. Analysis of biochemical markers of defense showed a significant increase in total polyphenol, flavonoid, and total protein contents. There was also significant upregulation of PR-proteins such as chitinases, peroxidases and β-1, 3-glucanases following treatment of both tolerant and susceptible hybrids, though with a higher level of synthesis in the tolerant hybrids. A significant increase was also observed in polyphenol oxidase activities in plants treated with the formulation. This work demonstrated the stability and effectiveness of the S. cameroonensis powder formulation in suppressing black pod disease in cocoa and subsequently enhancing the growth of seedlings.

EFFECT OF AGRICULTURAL BY-PRODUCT DIETS ON CARCASS CHARACTERISTICS OF FOUR TYPES OF CATTLE IN THE FEEDLOT

  • Dahlan, I.;Rahman-Haron, A.;Sukri, M.H.I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.455-459
    • /
    • 1992
  • Five type of formulated diet from agricultural by-products (ABP) were fed to four breedtype of cattle in feedlot. The ABP used are palm kernel cake (PKC), palm press fibre (PPF), palm oil mill effluent (POME), cocoa pod (COP), coffee pulp (COF) and pineapple waste (PAP). The formulated diets are PS (52% PKC, 15% PPF and 30% POME), PF (57% PKC, 20% PPF and 20% POME), PA (2% PKC and 55% PAP), CO (42% PKC and 55% COP) and CF (67% PKC and 30% COF) with 1% urea, 1% NaCl and 1% vitamins premix. The cattle breedtypes are Kedah-Kelantan (KK), Brahman-KK (BK), Hereford-KK (HK) and Sahiwal-Friesian (SF). The result showed that breedtype significantly affect all the carcass characteristic except dressing percentage. Each breedtype has it's specific carcass characteristics. HK cattle gave high marbling, BK has high % of carcass bone, KK has high % of carcass meat and low % of carcass fat (lean meat type) and SF has high % of carcass fat. Diet-type significantly affect the deposition of fat in the carcass. High moisture diets (PA and CO) produced significantly higher % carcass bone, the lowest % carcass fat and the highest % carcass meat (65.3%). PF, CF, PA and CO diets produced 63.4%, 59.9%, 55.3% and 54.1% carcass meat respectively.