DOI QR코드

DOI QR Code

Evaluation of Set-up Accuracy for Frame-based and Frameless Lung Stereotactic Body Radiation Therapy

폐암 정위체부방사선치료 시 고정기구(frame) 사용 유무에 따른 셋업 정확성 평가

  • Ji, Yunseo (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Chang, Kyung Hwan (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Cho, Byungchul (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kwak, Jungwon (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Song, Si Yeol (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Choi, Eun Kyung (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Lee, Sang-wook (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine)
  • 지윤서 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 장경환 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 조병철 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 곽정원 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 송시열 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 최은경 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 이상욱 (울산대학교 의과대학 서울아산병원 방사선종양학과)
  • Received : 2015.12.19
  • Accepted : 2015.12.23
  • Published : 2015.12.31

Abstract

The purpose of this study was to evaluate the set up accuracy using stereotactic body frame and frameless immobilizer for lung stereotactic body radiation therapy (SBRT). For total 40 lung cancer patients treated by SBRT, 20 patients using stereotactic body frame and other 20 patients using frameless immobilizer were separately enrolled in each group. The setup errors of each group depending on the immobilization methods were compared and analyzed. All patients received the dose of 48~60 Gy for 4 or 5 fractions. Before each treatment, a patient was first localized to the treatment isocenter using room lasers, and further aligned with a series of image guidance procedures; orthogonal kV radiographs, cone-beam CT, orthogonal fluoroscopy. The couch shifts during these procedures were recorded and analyzed for systematic and random errors of each group. Student t-test was performed to evaluate significant difference depending on the immobilization methods. The setup reproducibility was further analyzed using F-test with the random errors excluding the systematic setup errors. In addition, the ITV-PTV margin for each group was calculated. The setup errors for SBF were $0.05{\pm}0.25cm$ in vertical direction, $0.20{\pm}0.38cm$ in longitudinal direction, and $0.02{\pm}0.30cm$ in lateral direction, respectively. However the setup errors for frameless immobilizer showed a significant increase of $-0.24{\pm}0.25cm$ in vertical direction while similar results of $0.06{\pm}0.34cm$, $-0.02{\pm}0.25cm$ in longitudinal and lateral directions. ITV-PTV margins for SBF were 0.67 cm (vertical), 0.99 cm (longitudinal), and 0.83 cm (lateral), respectively. On the other hand, ITV-PTV margins for Frameless immobilizer were 0.75 cm (vertical), 0.96 cm (longitudinal), and 0.72 cm (lateral), indicating less than 1 mm difference for all directions. In conclusion, stereotactic body frame improves reproducibility of patient setup, resulted in 0.1~0.2 cm in both vertical and longitudinal directions. However the improvements are not substantial in clinic considering the effort and time consumption required for SBF setup.

본 연구의 목적은 폐암의 정위체부방사선 치료 환자에 대하여 정위체부고정기구 사용 유무에 따른 셋업 정확성을 비교 평가하고자 한다. 본원에서 정위체부방사선치료를 받은 총 40명의 환자를 대상으로, 정위체부고정기구를 기반으로 한셋업 방식의 환자군 20명과 고정기구 없이 Wing board를 사용한 환자군 20명으로 구분하여 각 셋업오차를 비교, 분석 하였다. 폐암의 정위체부방사선치료는 총 4~5회에 걸쳐 48~60 Gy 조사되었다. 매 치료 전, 먼저 레이저를 이용하여 환자를 치료중심점에 위치시킨 후 On-board kV 영상장치를 이용하여 2차원 직각영상을 얻어 척추를 기준으로 환자의 위치를 조정한 다음, 3차원 체적 영상을 획득 하여 종양의 위치를 치료중심점에 일치시키고, 마지막으로 호흡에 의한 종양의 위치 확인 및 조정을 위해 2차원 직각 투시영상을 이용하였다. 각 과정에서 얻은 테이블 이동 및 회전 값을 조사하여, 셋업 군별로 계통오차 및 랜덤오차를 구하였다. 고정기구 사용유무에 따른 통계적 유의성을 검증하기 위하여 계통오차에 대한 t-test 시행을 하였고, 셋업의 재현성의 차이를 보기위해 랜덤오차에 대한 F-test를 시행하였다. 나아가 이러한 셋업 방식의 차이가 셋업 여유분의 크기 결정에 영향이 있는지 여부를 평가하기위해 치료계획체적의 여유분을 계산하여 두 방식의 차이를 비교하였다. 정위체부 고정기구를 사용했을 때의 셋업 오차는 수직방향, 길이방향, 수평방향으로 각각 $0.05{\pm}0.25cm$, $0.20{\pm}0.38cm$, $0.02{\pm}0.30cm$이었다. 반면에, Frameless immobilizer을 사용한 단순 고정방법을 사용했을 때의 셋업 오차는 수직방향에서만 통계적으로 유의하게 $-0.24{\pm}0.25cm$으로 증가함을 보였으나, 길이방향, 수평방향에 대해서는 각각 $0.06{\pm}0.34cm$, $-0.02{\pm}0.25cm$의 작거나 비슷한 결과값을 보였다. 정위체부 고정기구를 사용했을 경우, 수직방향, 수직방향 및 길이방향으로의 여유분은 각각, 0.67 cm, 0.99 cm, 0.83 cm였고, Frameless immobilizer시 수직방향으로 0.75 cm, 길이방향으로 0.96 cm, 수평방향으로 0.72 cm로써 수평방향에서 최대 0.11 cm 차이가 남을 알 수 있었다. 결론적으로 정위체부고정기구를 사용하는 것이 환자 자세 재현성을 향상시켜 셋업 오차를 환자의 전후, 위아래 방향으로의 약 0.1~0.2 cm씩 줄일 수 있을 것으로 평가하였다. 다만 정위체부 고정기구 사용에 따른 시간 소요 및 치료절차의 복잡성에 비해 그 효과는 그리 크지 않았다.

Keywords

References

  1. Timmerman R, Paulus R, Galvin J, et al.: Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 303:1070-6 (2010) https://doi.org/10.1001/jama.2010.261
  2. Iyengar P, Timmerman RD: Stereotactic ablative radiotherapy for non-small cell lung cancer: rationale and outcomes. J Natl Compr Canc Netw. 10:1514-20 (2012) https://doi.org/10.6004/jnccn.2012.0157
  3. F. Zimmermann, J. Wulf, I. Lax, et al.: Stereotactic body radiation therapy for early non-small cell lung cancer. Front Radiat Ther Oncol, 42: 94-114 (2010)
  4. Barney BM, Lee RJ, Handrahan D, et al.: Image-guided radiotherapy (IGRT) for prostate cancer comparing kV imaging of fiducial markers with cone beam computed tomography (CBCT). Int J Radiat Oncol Biol Phys. 80:301-5 (2011) https://doi.org/10.1016/j.ijrobp.2010.06.007
  5. Moseley DJ, White EA, Wiltshire KL, et al.: Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. Int J Radiat Oncol Biol Phys. 67: 942-53(2007) https://doi.org/10.1016/j.ijrobp.2006.10.039
  6. Li W, Purdie TG, Taremi M, et al.: Effect of immobilization and performance status on intrafraction motion for stereotactic lung radiotherapy: analysis of 133 patients. Int J Radiat Oncol Biol Phys. 81:1568-75 (2011) https://doi.org/10.1016/j.ijrobp.2010.09.035
  7. Foster R, Meyer J, Iyengar P, et al.: Localization accuracy and immobilization effectiveness of a stereotactic body frame for a variety of treatment sites. Int J Radiat Oncol Biol Phys. 2087:911-6 (2013)
  8. Han Z, Bondeson JC, Lewis JH, et al.: Evaluation of initial setup accuracy and intrafraction motion for spine stereotactic body radiation therapy using stereotactic body frames. Pract Radiat Oncol. 2015 15:S1879-8500 (2015)
  9. Peguret N, Dahele M, Cuijpers JP, et al.: Frameless high dose rate stereotactic lung radiotherapy: intrafraction tumor position and delivery time. Radiother Oncol. 107:419-22 (2013) https://doi.org/10.1016/j.radonc.2013.04.019
  10. Josipovic M1, Persson GF, Logadottir A, et al.: Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy. Acta Oncol. 51:610-7 (2012) https://doi.org/10.3109/0284186X.2011.626448
  11. Murray B, Forster K, Timmerman R. Frame-based immobilization and targeting for stereotactic body radiation therapy. Med Dosim. 32:86-91 (2007) https://doi.org/10.1016/j.meddos.2007.01.005
  12. Sonke JJ, Rossi M, Wolthaus J, et al.: Frameless stereotactic body radiotherapy for lung cancer using four-dimensional cone beam CT guidance. Int J Radiat Oncol Biol Phys. 74: 567-74 (2009) https://doi.org/10.1016/j.ijrobp.2008.08.004
  13. Wulf J, Hadinger U, Oppitz U, et al.: Stereotactic radiotherapy of extracranial targets: CT-simulation and accuracy of treatment in the stereotactic body frame. Radiother Oncol. 2000 Nov;57(2):225-36. https://doi.org/10.1016/S0167-8140(00)00226-7
  14. Han K, Cheung P, Basran PS, et al.: A comparison of two immobilization systems for stereotactic body radiation therapy of lung tumors. Radiother Oncol. 95:103-8 (2010). https://doi.org/10.1016/j.radonc.2010.01.025
  15. Hansen AT, Petersen JB, Hoyer M. Internal movement, set-up accuracy and margins for stereotactic body radiotherapy using a stereotactic body frame. Acta Oncol. 45:948-52 (2006) https://doi.org/10.1080/02841860600911172
  16. Shah C, Grills IS, Kestin LL, et al.: Intrafraction variation of mean tumor position during image-guided hypofractionated stereotactic body radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys. 82:1636-41 (2012) https://doi.org/10.1016/j.ijrobp.2011.02.011
  17. Guckenberger M, Meyer J, Wilbert J, et al.: Intra-fractional uncertainties in cone-beam CT based image-guided radiotherapy (IGRT) of pulmonary tumors. Radiother Oncol. 83:57-64 (2007) https://doi.org/10.1016/j.radonc.2007.01.012
  18. van Herk M. Errors and margins in radiotherapy. Semin Radiat Oncol. 14:52-64 (2004) https://doi.org/10.1053/j.semradonc.2003.10.003
  19. van Herk M, Remeijer P, Rasch C, et al.: The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys. 47:1121-35 (2000) https://doi.org/10.1016/S0360-3016(00)00518-6