DOI QR코드

DOI QR Code

Suggestion for Comprehensive Quality Assurance of Medical Linear Accelerator in Korea

국내 선형가속기의 포괄적인 품질관리체계에 대한 제언

  • Choi, Sang Hyoun (Department of Radiation Oncology, Korea Institute of Radiological and Medical Science) ;
  • Park, Dong-wook (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Kum Bae (Department of Radiation Oncology, Korea Institute of Radiological and Medical Science) ;
  • Kim, Dong Wook (Department of Radiation Oncology, Kyung Hee University Hospital at Gandong) ;
  • Lee, Jaiki (Department of Nuclear Engineering, Hanyang University) ;
  • Shin, Dong Oh (Department of Radiation Oncology, Kyung Hee University Hospital)
  • 최상현 (한국원자력의학원 방사선의학연구센터) ;
  • 박동욱 (한양대학교 원자력공학과) ;
  • 김금배 (한국원자력의학원 방사선의학연구센터) ;
  • 김동욱 (강동경희대학교병원 방사선종양학과) ;
  • 이재기 (한양대학교 원자력공학과) ;
  • 신동오 (경희대학교병원 방사선종양학과)
  • Received : 2015.12.07
  • Accepted : 2015.12.22
  • Published : 2015.12.31

Abstract

American Association of Physicists in Medicine (AAPM) Published Task Group 40 report which includes recommendations for comprehensive quality assurance (QA) for medical linear accelerator in 1994 and TG-142 report for recommendation for QA which includes procedures such as intensity-modulated radiotherapy (IMRT), stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) in 2010. Recently, Nuclear Safety and Security Commission (NSSC) published NSSC notification no. 2015-005 which is "Technological standards for radiation safety of medical field". This notification regulate to establish guidelines for quality assurance which includes organization and job, devices, methods/frequency/tolerances and action levels for QA, and to implement quality assurance in each medical institution. For this reason, all of these facilities using medical machine for patient treatment should establish items, frequencies and tolerances for proper QA for medical treatment machine that use the techniques such as non-IMRT, IMRT and SRS/SBRT, and perform quality assurance. For domestic, however, there are lack of guidelines and reports of Korean Society of Medical Physicists (KSMP) for reference to establish systematic QA report in medical institutes. This report, therefore, suggested comprehensive quality assurance system such as the scheme of quality assurance system, which is considered for domestic conditions, based the notification of NSSC and AAPM TG-142 reports. We think that the quality assurance system suggested for medical linear accelerator also help establishing QA system for another high-precision radiation treatment machines.

미국의학물리학회는 포괄적인 방사선치료기기의 품질관리를 위한 작업그룹(Task Group: TG) 40 보고서를 1994년 발표한 이후로 세기조절방사선치료, 정위적방사선치료, 및 영상유도방사선치료 등의 고정밀 방사선치료를 포함한 선형가속기에 대한 품질관리를 권고하기 위해 2010년에 AAPM TG-142를 발간하였다. 그리고 최근 국내에서도 최신 치료기법에 대한 품질관리의 필요성에 따라 원자력안전위원회는 원자력안전위원회고시 제2015-005호 "의료분야의 방사선안전관리에 관한 기술기준"을 발표하였다. 원자력안전위원회고시에는 각 의료기관에서 품질관리전문인력을 두어 품질관리 조직 및 직무, 품질관리에 필요한 장비, 품질관리 방법/주기/관리오차 및 관리오차 초과 시 조치방법 등에 대한 내용이 포함된 품질관리절차서를 수립하고 품질관리를 수행하도록 규정되어 있다. 이에 따라 의료기관에서는 3차원 입체조형방사선치료, 세기조절방사선치료, 정위적방사선치료 등과 같은 방사선치료유형별(Non-IMRT, IMRT, SRS/SBRT)로 방사선치료기기에 맞는 품질관리 항목, 주기 및 관리오차를 설정하고, 적절한 품질관리 장비 등을 사용하여 기관의 실정에 맞게 품질관리를 수행하여야 한다. 그러나 국내에는 선형가속기의 체계적인 품질관리를 구축할 수 있는 지침서나 학회 보고서 등이 미비하여 현재 각 의료기관별로 각기 다른 품질관리의 항목, 주기 및 관리오차를 설정하여 품질관리를 수행하고 있는 실정이다. 그러므로 본 논문에서는 방사선치료의 안전성 및 정확성을 확보하기 위해 원자력안전위원회 고시 및 TG-142에 기반한 국내 실정에 적합한 선형가속기에 대한 품질관리체계 구축 방안 등을 제안하였다. 제안된 선형가속기에 대한 품질관리 체계는 다른 고정밀 방사선치료기기 등의 품질관리 체계 구축에도 도움이 될 것으로 사료된다.

Keywords

References

  1. Suzanne LW, William CC, David GP et al: Intensitymodulated radiation therapy (IMRT) for nasopharynx cancer: Update of the Memorial Sloan-Kettering experience. Int. Radiat Oncol Biol Phys 64(1):57-62 (2006) https://doi.org/10.1016/j.ijrobp.2005.03.057
  2. Ross IB, Fred H, Chris Z et al: A novel method for estimating SBRT delivered dose with beam's-eye-view images. Med Phys 35:3225-3231 (2008) https://doi.org/10.1118/1.2938514
  3. Thongphiew D, Wu QA, Lee WR et al: Comparison of online IGRT techniques for prostate IMRT treatment: adaptive vs repositioning correction. Med Phys 36(5):1651-1662 (2009) https://doi.org/10.1118/1.3095767
  4. Park HJ, Griffin RJ, Hui S et al: Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res 177(3):311-27 (2012) https://doi.org/10.1667/RR2773.1
  5. ICRP Publication 86: Prevention of Accidents to Patients Undergoing Radiation Therapy. International Commission on Radiological Protection, England (2000)
  6. ICRU Report 24: Determination of absorbed dose in a patient irradiated by beams of ${\time}$ or gamma rays in radiotherapy procedures. International Commission in Radiation Units and Measurements, Maryland (1976)
  7. Herring DF, Compton DHJ: The degree of precision in the radiation dose delivered in cancer radiotherapy. Computers in Radiotherapy. Br J Radiol Special Report 5:51-58 (1971)
  8. AAPM Task Group No. 24: Physical Aspects of Quality Assurance in Radiation Therapy. American Association of Physicists in Medicine (1984)
  9. ICRP Publication 86: Prevention of Accidents to Patients Undergoing Radiation Therapy. International Commission on Radiological Protection, England (2000)
  10. ICRP Publication 112: A report of preventing accidental exposures from new external beam radiation therapy technologies. International Commission on Radiological Protection, England (2009)
  11. IAEA: Accidental overexposure of radiotherapy patients in San Jose, Costa Rica. International Atomic Energy Agency, Vienna (1998)
  12. IAEA: SRS 17: Lessons learned form accidental exposures in radiotherapy. International Atomic Energy Agency, Vienna (2000)
  13. Kutcher GJ, Coia L, Gilin M et al: Comprehensive QA for radiation oncology. AAPM Task Group 40 report: Med Phys 21(4):581-618 (1994) https://doi.org/10.1118/1.597316
  14. Klein EE, Hanley J, Bayouth J et al: Task Group 142 report: Quality assurance of medical accelerators. Med Phys 36(9):4197-4212 (2009) https://doi.org/10.1118/1.3190392
  15. Langen KM, Papanikolaou N, Balog J et al: QA for helical tomotherapy: Report of the AAPM Task Group 148: Med Phys 37(9):4817-4853 (2010) https://doi.org/10.1118/1.3462971
  16. Dieterich S, Cavedon C, Chuang CF et al: Report of AAPM TG 135: Quality assurance for robotic radiosurgery. Med Phys 38(6):2914-2936 (2011) https://doi.org/10.1118/1.3579139
  17. Jeong S, Yoon M, Lee H: The Results of the Survey about Present Situation of Quality Assurance for Radiotherapy Machine of Korea. Prog Med Phys 26(3): 185-191 (2015) https://doi.org/10.14316/pmp.2015.26.3.185
  18. Dunscombe P, Johnson H, Arsenault C et al: Development of quality control standards for radiation therapy equipment in Canada. J Appl Clin Med Phys 8(1):108-118 (2007) https://doi.org/10.1120/jacmp.v8i1.2380
  19. Mayles WPM, Lake R, McKenzie A et al. Physics aspects of quality control in radiotherapy. Report no. 81. York, UK (1999)
  20. EUROPEAN SOCIETY FOR THERAPEUTIC RADIOLOGY AND ONCOLOGY, Quality assurance in radiotherapy. Radiother Oncol 35: 61-73 (1995) https://doi.org/10.1016/0167-8140(95)01549-V
  21. WORLD HEALTH ORGANIZATION, Quality Assurance in Radiotherapy, WHO, Geneva (1988).
  22. Journal of JASTRO: Guideline for Quality Assurance(QA) System in External Radiation Therapy. Vol. 11 Supplement 2, J Jpn Soc Ther Radiol Oncol (2000)
  23. International Atomic Energy Agency. Setting Up a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects. Vienna: IAEA (2008)
  24. Nath R, Biggs PJ, Bova FJ et al. AAPM code of practice for radiotherapy accelerators. Report of AAPM Radiation Therapy Task Group No. 45. Med Phys 21:1093-1121 (1994) https://doi.org/10.1118/1.597398
  25. lnternational Electrotechnical Commission: Medical electron accelerators- functional performance characteristics. Geneva: IEC Publication; (1983)
  26. lnternational Electrotechnical Commission: Medical electron accelerators in the range 1 MeV-50 MeV-guidelines for functional performance characteristics. Geneva: IEC Publication (1983)
  27. Das IJ, Cheng CW, Watts RJ et al: Accelerator beam data commissioning equipment and procedures. Report of the TG-106 of the Therapy Physics Committee of the AAPM: Med Phys 35(9): 4186-4215 (2008) https://doi.org/10.1118/1.2969070
  28. Bell S: A beginner's guide to uncertainty of measurement-Good measurement practice. guide No. 11 (1999) ISSN 1368-6550
  29. NIST: Guidelines for evaluating and expressing the uncertainty of NIST Measurement Results (1994)
  30. IAEA-TECDOC-1585: Measurement Uncertainty (2008)
  31. Pawlicki T, Whitaler M, Boyer AL, et al: Statistical process control for radiotherapy quality assurance. Med Phys 32:2777-86 (2005) https://doi.org/10.1118/1.2001209
  32. Kwang-Ho Cheong: Use of Statistical Process Control for Quality Assurance in Radiation Therapy. Prog Med Phys 26(2): 59-71 (2015) https://doi.org/10.14316/pmp.2015.26.2.59
  33. Cunningham J, Coffey M, Knoos T, et al. Radiation Oncology Safety Information System (ROSIS)-Profiles of participants and the first 1074 incident reports. Radiother Oncol 97:601-7 (2010) https://doi.org/10.1016/j.radonc.2010.10.023
  34. ROSIS, Radiation Oncology Safety Information System: //www.rosis.info/ (accessed 2012-5-1)

Cited by

  1. CT조영제가 방사선치료계획(두경부, 전립선)에 미치는 영향 vol.26, pp.5, 2016, https://doi.org/10.4283/jkms.2016.26.5.173
  2. Proposal on Guideline for Quality Assurance of Radiation Treatment Planning System vol.28, pp.4, 2015, https://doi.org/10.14316/pmp.2017.28.4.197
  3. Daily Based Quality Assurance of Volumetric Modulated Arc Therapy for the Full Session of Treatment vol.73, pp.7, 2018, https://doi.org/10.3938/jkps.73.990
  4. Plan-Class Specific Reference Quality Assurance for Volumetric Modulated Arc Therapy vol.44, pp.1, 2015, https://doi.org/10.14407/jrpr.2019.44.1.32
  5. Mid-Term Performance of Clinical LINAC in Volumetric Modulated Arc Therapy vol.44, pp.1, 2019, https://doi.org/10.14407/jrpr.2019.44.1.43