DOI QR코드

DOI QR Code

EIGENVALUE INEQUALITIES OF THE SCHRÖDINGER-TYPE OPERATOR ON BOUNDED DOMAINS IN STRICTLY PSEUDOCONVEX CR MANIFOLDS

  • Du, Feng (School of Mathematics and Physics Science Jingchu University of Technology) ;
  • Li, Yanli (School of Electronic and Information Science Jingchu University of Technology) ;
  • Mao, Jing (Department of Mathematics Harbin Institute of Technology)
  • Received : 2013.12.18
  • Published : 2015.01.31

Abstract

In this paper, we study the eigenvalue problem of Schr$\ddot{o}$dinger-type operator on bounded domains in strictly pseudoconvex CR manifolds and obtain some universal inequalities for lower order eigenvalues. Moreover, we will give some generalized Reilly-type inequalities of the first nonzero eigenvalue of the sub-Laplacian on a compact strictly pseudoconvex CR manifold without boundary.

Keywords

References

  1. A. Aribi and A. El Soufi, Inequalities and bounds for the eigenvalues of the sub-Laplacian on a strictly pseudoconvex CR manifold, Calc. Var. PDE. 47 (2013), no. 3-4, 437-463. https://doi.org/10.1007/s00526-012-0523-2
  2. M. S. Ashbaugh and R. D. Benguria, Proof of the Payne-Polya-Weinberger conjecture, Bull. Amer. Math. Soc. 25 (1991), no. 1, 19-29. https://doi.org/10.1090/S0273-0979-1991-16016-7
  3. M. S. Ashbaugh and R. D. Benguria, A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Ann. of Math. 135 (1992), no. 3, 601-628. https://doi.org/10.2307/2946578
  4. M. S. Ashbaugh and R. D. Benguria, A second proof of the Payne-Polya-Weinberger conjecture, Comm. Math. Phys. 147 (1992), no. 1, 181-190. https://doi.org/10.1007/BF02099533
  5. M. S. Ashbaugh and R. D. Benguria, More bounds on eigenvalue ratios for Dirichlet Laplacians in n dimensions, SIAM J. Math. Anal. 24 (1993), no. 6, 1622-1651. https://doi.org/10.1137/0524091
  6. E. Barletta, The Lichnerowicz theorem on CR manifolds, Tsukuba J. Math. 31 (2007), no. 1, 77-97. https://doi.org/10.21099/tkbjm/1496165116
  7. E. Barletta and S. Dragomir, On the spectrum of a strictly pseudoconvex CR manifold, Abh. Math. Sem. Univ. Hamburg 67 (1997), no. 1, 33-46. https://doi.org/10.1007/BF02940818
  8. E. Barletta and S. Dragomir, Sublaplacians on CR manifolds, Bull. Math. Soc. Sci. Math. Roum. 52(100) (2009), no. 1, 3-32.
  9. E. Barletta, S. Dragomir, and H. Urakawa, Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds, Indiana Univ. Math. J. 50 (2001), no. 2, 719-746.
  10. Q. M. Cheng, G. Huang, and G.Wei, Estimates for lower order eigenvalues of a clamped plate problem, Calc. Var. Partial Differential Equations 38 (2010), no. 3-4, 409-416. https://doi.org/10.1007/s00526-009-0292-8
  11. Q. M. Cheng, T. Ichikawa, and S. Mametsuka, Estimates for eigenvalues of the poly-Laplacian with any order in a unit sphere, Calc. Var. Partial Differential Equations 36 (2009), no. 4, 507-523. https://doi.org/10.1007/s00526-009-0240-7
  12. S. Dragomir and G. Tomassini, Differential Geometry and Analysis on CR Manifolds, Progress in Mathematics, Vol. 246, Birkhauser, Boston-Basel-Berlin, 2006.
  13. J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), no. 5, 385-524. https://doi.org/10.1112/blms/20.5.385
  14. A. Greenleaf, The first eigenvalue of a sublaplacian on a pseudohermitian manifold, Comm. Partial Differential Equations 10 (1985), no. 2, 191-217. https://doi.org/10.1080/03605308508820376
  15. E. M. Harrell and J. Stubbe, On trace identities and universal eigenvalue estimates for some partial differential operators, Trans. Am. Math. Soc. 349 (1997), no. 5, 1797-1809. https://doi.org/10.1090/S0002-9947-97-01846-1
  16. G. N. Hile and M. H. Protter, Inequalities for eigenvalues of the Laplacian, Indiana Univ. Math. J. 29 (1980), no. 4, 523-538. https://doi.org/10.1512/iumj.1980.29.29040
  17. G. Huang, X. Li, and R. Xu, Extrinsic estimates for the eigenvalues of Schrodinger operator, Geom. Dedicata 143 (2009), no. 1, 89-107. https://doi.org/10.1007/s10711-009-9375-0
  18. G. Kokarev, Sub-Laplacian eigenvalue bounds on CR manifolds, Comm. Partial Differential Equations 38 (2013), no. 11, 1971-1984. https://doi.org/10.1080/03605302.2013.831447
  19. A. Menikoff and J. Sjostrand, On the eigenvalues of a class of hypoelliptic operators, Math. Ann. 235 (1978), no. 1, 55-85. https://doi.org/10.1007/BF01421593
  20. J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), no. 1, 20-63. https://doi.org/10.2307/1969989
  21. L. E. Payne, G. Polya, and H. F. Weinberger, Sur le quotient de deux frequences propres consecutives, C. R. Acad. Sci. Paris 241 (1955), 917-919.
  22. L. E. Payne, G. Polya, and H. F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. Phys. 35 (1956), 289-298. https://doi.org/10.1002/sapm1956351289
  23. R. C. Reilly, On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comment. Math. Helv. 52 (1977), no. 4, 525-533. https://doi.org/10.1007/BF02567385
  24. H. J. Sun, Q. M. Cheng, and H. C. Yang, Lower order eigenvalues of Dirichlet Laplacian, Manuscripta Math. 125 (2008), no. 2, 139-156. https://doi.org/10.1007/s00229-007-0136-9
  25. Q. Wang and C. Xia, Universal bounds for eigenvalues of Schrodinger operator on Riemannian manifolds, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 2, 319-336.