Browse > Article
http://dx.doi.org/10.4134/BKMS.2015.52.1.223

EIGENVALUE INEQUALITIES OF THE SCHRÖDINGER-TYPE OPERATOR ON BOUNDED DOMAINS IN STRICTLY PSEUDOCONVEX CR MANIFOLDS  

Du, Feng (School of Mathematics and Physics Science Jingchu University of Technology)
Li, Yanli (School of Electronic and Information Science Jingchu University of Technology)
Mao, Jing (Department of Mathematics Harbin Institute of Technology)
Publication Information
Bulletin of the Korean Mathematical Society / v.52, no.1, 2015 , pp. 223-228 More about this Journal
Abstract
In this paper, we study the eigenvalue problem of Schr$\ddot{o}$dinger-type operator on bounded domains in strictly pseudoconvex CR manifolds and obtain some universal inequalities for lower order eigenvalues. Moreover, we will give some generalized Reilly-type inequalities of the first nonzero eigenvalue of the sub-Laplacian on a compact strictly pseudoconvex CR manifold without boundary.
Keywords
sub-Laplacian; Schr$\ddot{o}$dinger-type operator; eigenvalues; universal inequalities; strictly pseudoconvex CR manifolds;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Aribi and A. El Soufi, Inequalities and bounds for the eigenvalues of the sub-Laplacian on a strictly pseudoconvex CR manifold, Calc. Var. PDE. 47 (2013), no. 3-4, 437-463.   DOI   ScienceOn
2 M. S. Ashbaugh and R. D. Benguria, Proof of the Payne-Polya-Weinberger conjecture, Bull. Amer. Math. Soc. 25 (1991), no. 1, 19-29.   DOI
3 M. S. Ashbaugh and R. D. Benguria, A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Ann. of Math. 135 (1992), no. 3, 601-628.   DOI
4 M. S. Ashbaugh and R. D. Benguria, A second proof of the Payne-Polya-Weinberger conjecture, Comm. Math. Phys. 147 (1992), no. 1, 181-190.   DOI
5 M. S. Ashbaugh and R. D. Benguria, More bounds on eigenvalue ratios for Dirichlet Laplacians in n dimensions, SIAM J. Math. Anal. 24 (1993), no. 6, 1622-1651.   DOI   ScienceOn
6 E. Barletta, The Lichnerowicz theorem on CR manifolds, Tsukuba J. Math. 31 (2007), no. 1, 77-97.   DOI
7 E. Barletta and S. Dragomir, On the spectrum of a strictly pseudoconvex CR manifold, Abh. Math. Sem. Univ. Hamburg 67 (1997), no. 1, 33-46.   DOI
8 E. Barletta and S. Dragomir, Sublaplacians on CR manifolds, Bull. Math. Soc. Sci. Math. Roum. 52(100) (2009), no. 1, 3-32.
9 E. Barletta, S. Dragomir, and H. Urakawa, Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds, Indiana Univ. Math. J. 50 (2001), no. 2, 719-746.
10 Q. M. Cheng, G. Huang, and G.Wei, Estimates for lower order eigenvalues of a clamped plate problem, Calc. Var. Partial Differential Equations 38 (2010), no. 3-4, 409-416.   DOI
11 Q. M. Cheng, T. Ichikawa, and S. Mametsuka, Estimates for eigenvalues of the poly-Laplacian with any order in a unit sphere, Calc. Var. Partial Differential Equations 36 (2009), no. 4, 507-523.   DOI
12 S. Dragomir and G. Tomassini, Differential Geometry and Analysis on CR Manifolds, Progress in Mathematics, Vol. 246, Birkhauser, Boston-Basel-Berlin, 2006.
13 J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), no. 5, 385-524.   DOI
14 A. Greenleaf, The first eigenvalue of a sublaplacian on a pseudohermitian manifold, Comm. Partial Differential Equations 10 (1985), no. 2, 191-217.   DOI   ScienceOn
15 E. M. Harrell and J. Stubbe, On trace identities and universal eigenvalue estimates for some partial differential operators, Trans. Am. Math. Soc. 349 (1997), no. 5, 1797-1809.   DOI   ScienceOn
16 A. Menikoff and J. Sjostrand, On the eigenvalues of a class of hypoelliptic operators, Math. Ann. 235 (1978), no. 1, 55-85.   DOI
17 G. N. Hile and M. H. Protter, Inequalities for eigenvalues of the Laplacian, Indiana Univ. Math. J. 29 (1980), no. 4, 523-538.   DOI
18 G. Huang, X. Li, and R. Xu, Extrinsic estimates for the eigenvalues of Schrodinger operator, Geom. Dedicata 143 (2009), no. 1, 89-107.   DOI
19 G. Kokarev, Sub-Laplacian eigenvalue bounds on CR manifolds, Comm. Partial Differential Equations 38 (2013), no. 11, 1971-1984.   DOI
20 J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), no. 1, 20-63.   DOI
21 L. E. Payne, G. Polya, and H. F. Weinberger, Sur le quotient de deux frequences propres consecutives, C. R. Acad. Sci. Paris 241 (1955), 917-919.
22 L. E. Payne, G. Polya, and H. F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. Phys. 35 (1956), 289-298.   DOI
23 R. C. Reilly, On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comment. Math. Helv. 52 (1977), no. 4, 525-533.   DOI
24 H. J. Sun, Q. M. Cheng, and H. C. Yang, Lower order eigenvalues of Dirichlet Laplacian, Manuscripta Math. 125 (2008), no. 2, 139-156.   DOI
25 Q. Wang and C. Xia, Universal bounds for eigenvalues of Schrodinger operator on Riemannian manifolds, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 2, 319-336.