DOI QR코드

DOI QR Code

Delignification Effect on Properties of Lignocellulose Nanofibers from Korean White Pine and Their Nanopapers

잣나무 유래 리그노셀룰로오스 나노섬유 및 나노종이 특성에 미치는 탈리그닌의 영향

  • Jang, Jae-Hyuk (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Lee, Seung-Hwan (College of Forest & Environmental Sciences, Kangwon National University) ;
  • Kim, Nam-Hun (College of Forest & Environmental Sciences, Kangwon National University)
  • 장재혁 (강원대학교 산림환경과학대학) ;
  • 이승환 (강원대학교 산림환경과학대학) ;
  • 김남훈 (강원대학교 산림환경과학대학)
  • Received : 2014.08.11
  • Accepted : 2014.09.11
  • Published : 2015.01.25

Abstract

This study was carried out to investigate the effect of delignification on properties of lignocellulose nanofibers (LCNFs) prepared by wet disk-milling (WDM) after steam and ozone oxidation pre-treatments and their nanopaper sheets. Delignification treatment was effective to obtain fine morphology with uniform fiber diameter less than 35 nm without aggregation, and increased the specific surface area (SSA) and filtration time of LCNFs. In particular, SSA and filtration time of the LCNFs prepared by WDM after ozone pretreatment increased 1.5 and 5.4 times after further delignification. Delignification also increased whiteness and decreased the redness of nanopaper sheets. The highest color difference (41.9) before and after the delignification was obtained in LCNFs prepared by WDM after the steam pretreatment. Tensile properties of nanopaper sheets were also increased by further delignification. The highest tensile strength was found to be 142 MPa.

본 연구에서는 고온증기 및 오존 전처리로 제조된 리그노셀룰로오스 나노섬유의 탈리그닌 처리가 나노섬유 및 나노종이의 특성에 미치는 영향을 평가하였다. 형태학적 특성 관찰 결과, 탈리그닌 처리에 의해 평균 직경 35 nm 이하의 균일한 섬유가 얻어졌다. 또한 탈리그닌 처리는 리그노셀룰로오스 나노섬유의 비표면적을 크게 향상시켰으며, 특히 오존 전처리의 경우는 탈리그닌 처리에 의해 무처리에 비하여 1.5배 증가하였다. 나노종이 제조 과정 중의 여수시간 또한 탈리그닌 처리에 의해 크게 증가하여, 고온증기 전처리의 경우는 탈리그닌 처리에 의해 무처리와 비교하여 5.4배 증가하였다. 탈리그닌 처리는 나노종이의 백색도를 향상시켰으며, 고온증기 전처리의 경우는 탈리그닌 전과 비교하여 색상차가 41.9로 매우 높게 나타났다. 나노종이의 인장강도, 탄성율 및 신장율도 탈리그닌에 의하여 크게 향상되었으며, 고온증기 전처리 후의 탈리그닌에 의한 나노종이의 인장강도가 142 MPa로 가장 높게 나타났다.

Keywords

References

  1. Ahlgren, P.A., Goring, D.A.I. 1971. Removal of wood components during chlorite delignification of black spruce. Canadian Journal of Chemistry. 49(8): 1272-1275. https://doi.org/10.1139/v71-207
  2. Brunauer, S., Emmett, P.H., Teller, E. 1938. Adsorption of gases in multimolecular layers. Journal of the american Chemical Society. 60(2): 309-319. https://doi.org/10.1021/ja01269a023
  3. Chang, F., Lee, S.H., Toba, K., Nagatani, A., Endo, T. 2012. Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite. Wood Science and Technology. 46: 393-403. https://doi.org/10.1007/s00226-011-0416-0
  4. Cho, M.J., Park, B.D. 2010. Current research on nanocellulose-reinforced nanocomposites. Journal of The Korean Wood Science and Technology 38(6): 587-601. https://doi.org/10.5658/WOOD.2010.38.6.587
  5. Chun, S.J., Choi, E.S., Lee, E.H., Kim, J.H., Lee, S.Y., Lee, S.Y. 2012. Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. Journal of Materials Chemistry. 22: 16618-16626. https://doi.org/10.1039/c2jm32415f
  6. Habibi, Y., Lucia, L.A., Rojas, O.J. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews. 110(6): 3479-3500. https://doi.org/10.1021/cr900339w
  7. Han, E.J., Cho, J.Y. 2005. Color analysis of printed silk with digital textile printing method. Journal of the Korean Society of Design Culture. 11(2): 126-134.
  8. Hasanjanzadeh, H., Hedjazi, S., Ashori, A., Mahdavi, S., Yousefi, H. 2014. Effects of hemicellulose pre-extraction and cellulose nanofiber on the properties of rice straw pulp. International Journal of Biological Macromolecules. 68: 198-204. https://doi.org/10.1016/j.ijbiomac.2014.04.052
  9. Hubbell, C.A., Ragauskas, A.J. 2010. Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresources Technology. 101: 7410-7415. https://doi.org/10.1016/j.biortech.2010.04.029
  10. Hwang, B.H. 2011. Chemistry of lignin -Synthesis, degradation, utilizations-. Kangwon National University Press. Chuncheon, Republic of Korea. pp. 7-8.
  11. Jang, J.H., Kwon, G.J., Kim, J.H., Kwon, S.M., Yoon, S.L., Kim, N.H. 2012. Preparation of cellulose nanofibers from domestic platation resources. Journal of The Korean Wood Science and Technology. 40(3): 156-163. https://doi.org/10.5658/WOOD.2012.40.3.156
  12. Jang, J.H., Lee, S.H., Endo, T., Kim, N.H. 2013. Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine. Wood Science and Technology. 47: 925-937. https://doi.org/10.1007/s00226-013-0543-x
  13. Jang, J.H., Lee, S.H., Febrianto, F., Endo, T., Kim, N.H. 2013. Preparation and characterization of cellulose nanofiber from Betung bamboo obtained by delignification treatment. Daejeon, Republic of Korea, Proceeding of 2013 the Korean Society of Wood Science and Technology Annual Meeting. pp. 102-103.
  14. Jang, J.H., Lee, S.H., Kim, N.H. 2014. Preparation of lignocellulose nanofibers from Korean white pine and its applications to polyurethane nanocomposite. Journal of The Korean Wood Science and Technology 42(6): 700-707. https://doi.org/10.5658/WOOD.2014.42.6.700
  15. Japanese Standards Association. 1999. Testing method for tensile properties of plastic films & sheets. JIS K 7127 : 1999 (ISO 527-3 : 1995).
  16. Jungnikl, K., Paris, O., Fratzl, P., Burgert, I. 2008. The implication of chemical extraction treatments on the cell wall nanostructure of softwood. Cellulose. 15(3): 407-418. https://doi.org/10.1007/s10570-007-9181-5
  17. Kumar, R., Hu, F., Hubbell, C.A., Ragauskas, A.J., Wyman, C.E. 2013. Comparison of laboratory delignification methods, their selectivity, and impacts on physicochemical characteristics of cellulosic biomass. Bioresources Technology. 130: 372-381. https://doi.org/10.1016/j.biortech.2012.12.028
  18. Lavoine, N., Desloges, I., Dufresne, A., Bras, J. 2012. Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers. 90: 735-764. https://doi.org/10.1016/j.carbpol.2012.05.026
  19. Lee, S.H., Chang, F., Inoue, S., Endo, T. 2010. Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresource Technology. 101: 7218-7223. https://doi.org/10.1016/j.biortech.2010.04.069
  20. Lee, S.Y., Chun, S.J., Doh, G.H., Lee, S., Kim, B.H., Min, K.S., Kim, S.C., Huh, Y.S. 2011. Preparation of cellulose nanofibrilas and their applications: High strength nanopapers and polymer composite films. Journal of The Korean Wood Science and Technology. 39(3): 197-205. https://doi.org/10.5658/WOOD.2011.39.3.197
  21. Miura, T., Lee, S.H., Inoue, S., Endo, T. 2012. Improvement of enzymatic saccharification of sugarcane bagasseby dilute-alkali-catalyzed hydrothermal treatment and subsequent disk milling. Bioresources Technology. 105: 95-99. https://doi.org/10.1016/j.biortech.2011.11.118
  22. Okahisa, Y., Abe, K., Nogi, M., Nakagaito, A.N., Nakatani, T., Yano, H. 2011. Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. composites Science and Technology. 71: 1342-1347. https://doi.org/10.1016/j.compscitech.2011.05.006
  23. Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E. 2014. Lignin valorization: Improving lignin processing in the biorefinery. Science.
  24. Sehaqui, H., Liu, A., Zhou, Q., Berglund, L. A. 2010. Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structure. Biomacromolecules. 11: 2195-2198. https://doi.org/10.1021/bm100490s
  25. Sun, J.X., Sun, X.F., Sun, R.C., Su, Y.Q. 2004. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydrate Polymers. 56: 195-204. https://doi.org/10.1016/j.carbpol.2004.02.002
  26. Wise, L.E., Murphy, M., Addieco, A.A. 1946. Isolation of holocellulose from wood. Paper Trade Journal. 122: 35-43.
  27. Xu, P., Donaldson, L., Gergely, Z.R., Staehelin, L.A. 2007. Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Science and Technology. 41: 101-116. https://doi.org/10.1007/s00226-006-0088-3

Cited by

  1. Size Fractionation of Cellulose Nanofibers by Settling Method and Their Morphology vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.398