DOI QR코드

DOI QR Code

Development of Bile Salt-Resistant Leuconostoc citreum by Expression of Bile Salt Hydrolase Gene

  • Cho, Seung Kee (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University) ;
  • Lee, Soo Jin (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University) ;
  • Shin, So-Yeon (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University) ;
  • Moon, Jin Seok (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University) ;
  • Li, Ling (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University) ;
  • Joo, Wooha (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University) ;
  • Kang, Dae-Kyung (Department of Animal Resources Science, Dankook University) ;
  • Han, Nam Soo (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
  • Received : 2015.05.26
  • Accepted : 2015.08.11
  • Published : 2015.12.28

Abstract

Probiotic bacteria must have not only tolerance against bile salt but also no genes for antibiotic resistance. Leuconostoc citreum is a dominant lactic acid bacterium in various fermented foods, but it is not regarded as a probiotic because it lacks bile salt resistance. Therefore, we aimed to construct a bile salt-resistant L. citreum strain by transforming it with a bile salt hydrolase gene (bsh). We obtained the 1,001 bp bsh gene from the chromosomal DNA of Lactobacillus plantarum and subcloned it into the pCB4170 vector under a constitutive P710 promoter. The resulting vector, pCB4170BSH was transformed into L. citreum CB2567 by electroporation, and bile salt-resistant transformants were selected. Upon incubation with glycodeoxycholic acid sodium salt (GDCA), the L. citreum transformants grew and formed colonies, successfully transcribed the bsh gene, and expressed the BSH enzyme. The recombinant strain grew in up to 0.3% (w/v) GDCA, conditions unsuitable for the host strain. In in vitro digestion conditions of 10 mM bile salt, the transformant was over 67.6% viable, whereas only 0.8% of the host strain survived.

Keywords

References

  1. Allison G, Klaenhammer T. 1996. Functional analysis of the gene encoding immunity to lactacin F, lafI, and its use as a Lactobacillus-specific, food-grade genetic marker. Appl. Environ. Microbiol. 62: 4450-4460.
  2. Bohmer N, Dautel A, Eisele T, Fischer L. 2013. Recombinant expression, purification and characterisation of the native glutamate racemase from Lactobacillus plantarum NC8. Protein Expr. Purif. 88: 54-60. https://doi.org/10.1016/j.pep.2012.11.012
  3. Budde BB, Hornbæk T, Jacobsen T, Barkholt V, Koch AG. 2003. Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: culture isolation, bacteriocin identification, and meat application experiments. Int. J. Food Microbiol. 83: 171-184. https://doi.org/10.1016/S0168-1605(02)00364-1
  4. Cho SK. 2015. Development of food-grade vector for constitutive and inducible gene expression in Leuconostoc citreum. PhD Thesis, Chungbuk National University, Chungbuk, South Korea.
  5. Dashkevicz MP, Feighner SD. 1989. Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl. Environ. Microbiol. 55: 11-16.
  6. De Vos WM. 1999. Gene expression systems for lactic acid bacteria. Curr. Opin. Microbiol. 2: 289-295. https://doi.org/10.1016/S1369-5274(99)80050-2
  7. Dickely F, Nilsson D, Hansen EB, Johansen E. 1995. Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol. Microbiol. 15: 839-847. https://doi.org/10.1111/j.1365-2958.1995.tb02354.x
  8. Eom HJ, Seo DM, Han NS. 2007. Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. Int. J. Food Microbiol. 117: 61-67. https://doi.org/10.1016/j.ijfoodmicro.2007.02.027
  9. Eom HJ, Park JM, Seo MJ, Kim MD, Han NS. 2008. Monitoring of Leuconostoc mesenteroides DRC starter in fermented vegetable by random integration of chloramphenicol acetyltransferase gene. J. Ind. Microbiol. Biotechnol. 35: 953-959. https://doi.org/10.1007/s10295-008-0369-y
  10. Eom HJ, Moon JS, Cho SK, Kim JH, Han NS. 2012 Construction of theta-type shuttle vector for Leuconostoc and other lactic acid bacteria using pCB42 isolated from kimchi. Plasmid 67: 35-43. https://doi.org/10.1016/j.plasmid.2011.11.003
  11. FAO/WHO. 2002. Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO Working Group. Available at http://www.fao.org/es/ESN/food/foodandfood_probio_en.stm.
  12. Hemme D, Foucaud-Scheunemann C. 2004. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 14: 467-494. https://doi.org/10.1016/j.idairyj.2003.10.005
  13. Johansson P, Paulin L, Säde E, Salovuori N, Alatalo ER, Björkroth KJ, Auvinen P. 2011. Genome sequence of a food spoilage lactic acid bacterium, Leuconostoc gasicomitatum LMG18811T, in association with specific spoilage reactions. Appl. Environ. Microbiol. 77: 4344-4351. https://doi.org/10.1128/AEM.00102-11
  14. Kahala M, Mäki M, Lehtovaara A, Tapanainen JM, Katiska R, Juuruskorpi M, et al. 2008. Characterization of starter lactic acid bacteria from the Finnish fermented milk product viili. J. Appl. Microbiol. 105: 1929-1938. https://doi.org/10.1111/j.1365-2672.2008.03952.x
  15. Kim JF, Jeong H, Lee JS, Choi SH, Ha M, Hur CG, et al. 2008. Complete genome sequence of Leuconostoc citreum KM20. J. Bacteriol. 190: 3093-3094. https://doi.org/10.1128/JB.01862-07
  16. Leenhouts K, Bolhuis A, Venema G, Kok J. 1998. Construction of a food-grade multiple-copy integration system for Lactococcus lactis. Appl. Microbiol. Biotechnol. 49: 417-423. https://doi.org/10.1007/s002530051192
  17. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, et al. 2006. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA 103: 15611-15616. https://doi.org/10.1073/pnas.0607117103
  18. Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, et al. 2014. A standardised static in vitro digestion method suitable for food – an international consensus. Food Funct. 5: 1113-1124. https://doi.org/10.1039/c3fo60702j
  19. Moon JS, Choi HS, Shin SY, Noh SJ, Jeon CO, Han NS. 2015. Genome sequence analysis of potential probiotic strain Leuconostoc lactis EFEL005 isolated from kimchi. J. Microbiol. 53: 337-342. https://doi.org/10.1007/s12275-015-5090-8
  20. Nguyen TT, Mathiesen G, Fredriksen L, Kittl R, Nguyen TH, Eijsink VG, et al. 2011. A food-grade system for inducible gene expression in Lactobacillus plantarum using an alanine racemase-encoding selection marker. J. Agric. Food Chem. 59: 5617-5624 https://doi.org/10.1021/jf104755r
  21. Peterbauer C, Maischberger T, Haltrich D. 2011. Food-grade gene expression in lactic acid bacteria. Biotechnol. J. 6: 1147-1161. https://doi.org/10.1002/biot.201100034
  22. Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29: e45. https://doi.org/10.1093/nar/29.9.e45
  23. Posno M, Heuvelmans P, Van Giezen M, Lokman B, Leer R, Pouwels P. 1991. Complementation of the inability of Lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes of Lactobacillus pentosus. Appl. Environ. Microbiol. 57: 2764-2766.
  24. Rodgers S. 2008. Novel applications of live bacteria in food services: probiotics and protective cultures. Trends Food Sci. Technol. 19: 188-197. https://doi.org/10.1016/j.tifs.2007.11.007
  25. Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T. 2000. Probiotic bacteria: safety, functional and technological properties. J. Biotechnol. 84: 197-215. https://doi.org/10.1016/S0168-1656(00)00375-8
  26. Takala T, Saris P. 2002. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Appl. Microbiol. Biotechnol. 59: 467-471. https://doi.org/10.1007/s00253-002-1034-4
  27. Tannock GW. 1997. Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R & D. Trends Biotechnol. 15: 270-274. https://doi.org/10.1016/S0167-7799(97)01056-1
  28. Yin S, Zhai Z, Wang G, An H, Luo Y, Hao Y. 2011 A novel vector for lactic acid bacteria that uses a bile salt hydrolase gene as a potential food-grade selection marker. J. Biotechnol 152: 49-53. https://doi.org/10.1016/j.jbiotec.2011.01.018

Cited by

  1. Development of a high-copy plasmid for enhanced production of recombinant proteins in Leuconostoc citreum vol.15, pp.None, 2016, https://doi.org/10.1186/s12934-015-0400-8
  2. Bile salt hydrolases: Structure and function, substrate preference, and inhibitor development : Structural Basis for Designing BSH Inhibitors vol.27, pp.10, 2015, https://doi.org/10.1002/pro.3484
  3. Development of bicistronic expression system for the enhanced and reliable production of recombinant proteins in Leuconostoc citreum vol.8, pp.None, 2015, https://doi.org/10.1038/s41598-018-27091-z
  4. Plasmid curing resulted in improved heterologous gene expression in Leuconostoc citreum EFEL2700 vol.68, pp.5, 2019, https://doi.org/10.1111/lam.13118
  5. Recent Advances in Synthetic Biology for the Engineering of Lactic Acid Bacteria vol.25, pp.6, 2015, https://doi.org/10.1007/s12257-020-0033-6
  6. Suitability Analysis of 17 Probiotic Type Strains of Lactic Acid Bacteria as Starter for Kimchi Fermentation vol.10, pp.6, 2021, https://doi.org/10.3390/foods10061435
  7. Application of the Combination of Soybean Lecithin and Whey Protein Concentrate 80 to Improve the Bile Salt and Acid Tolerance of Probiotics vol.31, pp.6, 2021, https://doi.org/10.4014/jmb.2103.03017