Browse > Article
http://dx.doi.org/10.4014/jmb.1505.05072

Development of Bile Salt-Resistant Leuconostoc citreum by Expression of Bile Salt Hydrolase Gene  

Cho, Seung Kee (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
Lee, Soo Jin (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
Shin, So-Yeon (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
Moon, Jin Seok (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
Li, Ling (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
Joo, Wooha (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
Kang, Dae-Kyung (Department of Animal Resources Science, Dankook University)
Han, Nam Soo (Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.12, 2015 , pp. 2100-2105 More about this Journal
Abstract
Probiotic bacteria must have not only tolerance against bile salt but also no genes for antibiotic resistance. Leuconostoc citreum is a dominant lactic acid bacterium in various fermented foods, but it is not regarded as a probiotic because it lacks bile salt resistance. Therefore, we aimed to construct a bile salt-resistant L. citreum strain by transforming it with a bile salt hydrolase gene (bsh). We obtained the 1,001 bp bsh gene from the chromosomal DNA of Lactobacillus plantarum and subcloned it into the pCB4170 vector under a constitutive P710 promoter. The resulting vector, pCB4170BSH was transformed into L. citreum CB2567 by electroporation, and bile salt-resistant transformants were selected. Upon incubation with glycodeoxycholic acid sodium salt (GDCA), the L. citreum transformants grew and formed colonies, successfully transcribed the bsh gene, and expressed the BSH enzyme. The recombinant strain grew in up to 0.3% (w/v) GDCA, conditions unsuitable for the host strain. In in vitro digestion conditions of 10 mM bile salt, the transformant was over 67.6% viable, whereas only 0.8% of the host strain survived.
Keywords
Leuconostoc citreum; probiotics; bile salt hydrolase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bohmer N, Dautel A, Eisele T, Fischer L. 2013. Recombinant expression, purification and characterisation of the native glutamate racemase from Lactobacillus plantarum NC8. Protein Expr. Purif. 88: 54-60.   DOI
2 Allison G, Klaenhammer T. 1996. Functional analysis of the gene encoding immunity to lactacin F, lafI, and its use as a Lactobacillus-specific, food-grade genetic marker. Appl. Environ. Microbiol. 62: 4450-4460.
3 Johansson P, Paulin L, Säde E, Salovuori N, Alatalo ER, Björkroth KJ, Auvinen P. 2011. Genome sequence of a food spoilage lactic acid bacterium, Leuconostoc gasicomitatum LMG18811T, in association with specific spoilage reactions. Appl. Environ. Microbiol. 77: 4344-4351.   DOI
4 Hemme D, Foucaud-Scheunemann C. 2004. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 14: 467-494.   DOI
5 FAO/WHO. 2002. Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO Working Group. Available at http://www.fao.org/es/ESN/food/foodandfood_probio_en.stm.
6 Eom HJ, Moon JS, Cho SK, Kim JH, Han NS. 2012 Construction of theta-type shuttle vector for Leuconostoc and other lactic acid bacteria using pCB42 isolated from kimchi. Plasmid 67: 35-43.   DOI
7 Eom HJ, Park JM, Seo MJ, Kim MD, Han NS. 2008. Monitoring of Leuconostoc mesenteroides DRC starter in fermented vegetable by random integration of chloramphenicol acetyltransferase gene. J. Ind. Microbiol. Biotechnol. 35: 953-959.   DOI
8 Eom HJ, Seo DM, Han NS. 2007. Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. Int. J. Food Microbiol. 117: 61-67.   DOI
9 Dickely F, Nilsson D, Hansen EB, Johansen E. 1995. Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol. Microbiol. 15: 839-847.   DOI
10 De Vos WM. 1999. Gene expression systems for lactic acid bacteria. Curr. Opin. Microbiol. 2: 289-295.   DOI
11 Dashkevicz MP, Feighner SD. 1989. Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl. Environ. Microbiol. 55: 11-16.
12 Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29: e45.   DOI
13 Peterbauer C, Maischberger T, Haltrich D. 2011. Food-grade gene expression in lactic acid bacteria. Biotechnol. J. 6: 1147-1161.   DOI
14 Nguyen TT, Mathiesen G, Fredriksen L, Kittl R, Nguyen TH, Eijsink VG, et al. 2011. A food-grade system for inducible gene expression in Lactobacillus plantarum using an alanine racemase-encoding selection marker. J. Agric. Food Chem. 59: 5617-5624   DOI
15 Moon JS, Choi HS, Shin SY, Noh SJ, Jeon CO, Han NS. 2015. Genome sequence analysis of potential probiotic strain Leuconostoc lactis EFEL005 isolated from kimchi. J. Microbiol. 53: 337-342.   DOI
16 Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, et al. 2014. A standardised static in vitro digestion method suitable for food – an international consensus. Food Funct. 5: 1113-1124.   DOI
17 Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, et al. 2006. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA 103: 15611-15616.   DOI
18 Kahala M, Mäki M, Lehtovaara A, Tapanainen JM, Katiska R, Juuruskorpi M, et al. 2008. Characterization of starter lactic acid bacteria from the Finnish fermented milk product viili. J. Appl. Microbiol. 105: 1929-1938.   DOI
19 Leenhouts K, Bolhuis A, Venema G, Kok J. 1998. Construction of a food-grade multiple-copy integration system for Lactococcus lactis. Appl. Microbiol. Biotechnol. 49: 417-423.   DOI
20 Kim JF, Jeong H, Lee JS, Choi SH, Ha M, Hur CG, et al. 2008. Complete genome sequence of Leuconostoc citreum KM20. J. Bacteriol. 190: 3093-3094.   DOI
21 Yin S, Zhai Z, Wang G, An H, Luo Y, Hao Y. 2011 A novel vector for lactic acid bacteria that uses a bile salt hydrolase gene as a potential food-grade selection marker. J. Biotechnol 152: 49-53.   DOI
22 Tannock GW. 1997. Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R & D. Trends Biotechnol. 15: 270-274.   DOI
23 Takala T, Saris P. 2002. A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Appl. Microbiol. Biotechnol. 59: 467-471.   DOI
24 Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T. 2000. Probiotic bacteria: safety, functional and technological properties. J. Biotechnol. 84: 197-215.   DOI
25 Rodgers S. 2008. Novel applications of live bacteria in food services: probiotics and protective cultures. Trends Food Sci. Technol. 19: 188-197.   DOI
26 Posno M, Heuvelmans P, Van Giezen M, Lokman B, Leer R, Pouwels P. 1991. Complementation of the inability of Lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes of Lactobacillus pentosus. Appl. Environ. Microbiol. 57: 2764-2766.
27 Budde BB, Hornbæk T, Jacobsen T, Barkholt V, Koch AG. 2003. Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: culture isolation, bacteriocin identification, and meat application experiments. Int. J. Food Microbiol. 83: 171-184.   DOI
28 Cho SK. 2015. Development of food-grade vector for constitutive and inducible gene expression in Leuconostoc citreum. PhD Thesis, Chungbuk National University, Chungbuk, South Korea.