References
- H. Shin, S. Jo, and A. G. Mikos, Biomimetic materials for tissue engineering, Biomaterials, 24, 4353 (2003) DOI: http://www.ncbi.nlm.nih.gov/pubmed/12922148 https://doi.org/10.1016/S0142-9612(02)00356-3
- S. R. Caliaria, M. A. Ramirezb, and B. A. C. Harley, The development of collange -GAG scaffold-membrane composites for tendon tissue engineering, Biomaterials, 32(34), 8990 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.035
- C. J. Liao, C, F. Chen, J. H. Chen, S. F. Chiang, Y. J. Lin, and K. Y. Chan, Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method, Journal of Biomedical Materials Research, 59, 681 (2002). DOI: http://www.ncbi.nlm.nih.gov/pubmed/11774329
- Agrawal, CM., Niederauer, G.G., and Athanasiou, K.A. Fabrication and characterization of PLA-PGA orthopaedic implants. Tissue Eng. 1, 241, 1995. DOI: http://www.ncbi.nlm.nih.gov/pubmed/19877903 https://doi.org/10.1089/ten.1995.1.241
- Agrawal, CM., Niederauer, G.G., Micallef, D. M., and Athanasiou, K.A. The use of PLA-PGA polymers in orthopaedics. In: Wise, D., et al., eds. Encyclopedic Handbook of Biomaterials and Bioengineering. New York: Marcel Dekker, p. 2081, 1995.
- Athanasiou, K.A., Schmitz, J.P., Schenck, R. C, Clem, M., Aufdemorte, T., and Boyan, B.D. The use of biodegradable implants for repairing large articular cartilage defects in the rabbit. Transactions of the Orthopaedic Research Society 17(1), 172, 1992.
- Athanasiou, K.A., Niederauer, G.G., and Agrawal, CM. Sterilization, toxicity, biocompatibility, and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17(2), 93, 1996. DOI: http://www.ncbi.nlm.nih.gov/pubmed/8624401 https://doi.org/10.1016/0142-9612(96)85754-1
- S. I. Jeong, J. H. Kwon, and J. I. LIm, EVA-enhanced embedding medium for histological analysis of 3D porous scaffold material, Biomaterials, 26, 1405 (2009) DOI: http://www.ncbi.nlm.nih.gov/pubmed/19473850
- Y. Y. Xie, J. S. Park and S. K. Kang, Study on the characteristics and biodegradable of synthetic PLGA membrane from lactic acid and glycolic acid. Journal of the Korea Academia-Industrial cooperation Society Vol. 16, No. 4 pp. 2965, 2015. DOI: http://scholar.ndsl.kr/schDetail.do?cn=JAKO201516351715641
- Linbo Wu, Jiandong ding. In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomterials 25 9200) 5821-5830. DOI: http://www.ncbi.nlm.nih.gov/pubmed/15172494 https://doi.org/10.1016/j.biomaterials.2004.01.038
- Hirenkumar K. Makadia and Steven J. Siegel. Poly lactic-co-glycolic acid(PLGA) as biodegradation controlled drug delivery carrier. Polymers, 3, 1377-1397; DOI: http://dx.doi.org/10.3390/polym3031377.(2011) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347861/
- C.M.Agrawal, Ph.D., P.E., D. Huang, M.S., J.P. Schmitz, D.D.S., Ph.D., and K.A. Athanasiou, Ph.D., P.E. Elevated temperature degradation of a 50:50 copolymer of PLA-PGA. Tissue engineering Volume 3, Number 4, 1997 DOI: http://online.liebertpub.com/doi/abs/10.1089/ten.1997.3.345