DOI QR코드

DOI QR Code

Topic Model Analysis of Research Trend on Renewable Energy

신재생에너지 동향 파악을 위한 토픽 모형 분석

  • Shin, KyuSik (Department of Industrial and Management Engineering, Korea University) ;
  • Choi, HoeRyeon (Department of Industrial and Management Engineering, Korea University) ;
  • Lee, HongChul (Department of Industrial and Management Engineering, Korea University)
  • 신규식 (고려대학교 산업경영공학과) ;
  • 최회련 (고려대학교 산업경영공학과) ;
  • 이홍철 (고려대학교 산업경영공학과)
  • Received : 2015.08.18
  • Accepted : 2015.09.11
  • Published : 2015.09.30

Abstract

To respond the climate change and environmental pollution, the studies on renewable energy policies are increasing. The renewable energy is a new growth engine technology represented by the green industry and green technology. At present, the investments for the renewable energy supply and technology development projects of three main strategy sectors such as sunlight, wind power and hydrogen fuel cell are implemented in our country, while they are still in the early stage, accordingly reducing those uncertainty for the research direction and investment fields is the most urgent issue among others. Thus, this study applied text mining method and multinominal topic model among the big data analysis methods on our country's newspaper articles concerning the renewable energy over the last 10 years, and then analyzed the core issues and global research trend, forecasting the renewable energy fields with the growth potential. It is predicted that these results of the study based on information and communication technology will be actively applied on the renewable energy fields.

기후변화 및 환경오염에 대응하기 위해 신재생에너지 정책 연구가 증가하고 있다. 신재생에너지는 녹색산업과 녹색기술로 대표되는 새로운 성장 동력 기술이다. 현재 우리나라는 태양광, 풍력, 수소연료전지 등 3대 전략부분에 신재생에너지 보급 및 기술개발사업에 대한 투자가 이루어지고 있지만 아직은 초기 단계로, 연구 방향 및 투자 분야에 대한 불확실성을 줄이는 것이 무엇보다도 시급한 실정이다. 따라서 본 연구는 빅데이터(big data) 분석방법 중 텍스트 마이닝(Text mining method)과 토픽 모델링 기법(multinominal topic model)을 신재생에너지와 관련된 최근 10년간의 우리나라 언론기사에 적용하여 국가 정책의 핵심이슈 및 세계적인 연구 트렌드를 분석하고, 성장 가능성이 있는 신재생에너지 분야를 예측하였다. 정보통신기술을 바탕으로 한 연구결과는 신재생에너지 분야에 활발히 적용될 것으로 예측된다.

Keywords

References

  1. Blei, D. M., Ng, A. Y., &Jordan, M. I."Latent dirichlet allocation". the Journal of machine Learning research, 3, 993-1022. 2003.
  2. Blei, D. M., & Lafferty, J. D. Dynamic topic models. In Proceedings of the 23rd international conference on Machine learning (pp. 113-120). ACM. 2006. DOI: http://dx.doi.org/10.1145/1143844.1143859
  3. Seol A Jin, Go Eun Heo, Yoo Kyung Jeong, & Min Song. "Topic-Network based Topic Shift Detection on Twitter". Korea Society for Information Management, 30(1), 285-302. 2013. DOI: http://dx.doi.org/10.3743/KOSIM.2013.30.1.285
  4. Ja-Hyun Park, & Min Song. "A Study on the Research Trends in Library & Information Science in Korea using Topic Modeling". Korea Society for Information Management, 30(1), 7-32. 2013. DOI: http://dx.doi.org/10.3743/KOSIM.2013.30.1.007
  5. Griffiths, T. L., & Steyvers, M. Finding scientific topics. Proceedings of the National Academy of Sciences, 101(suppl 1), 5228-5235.2004. DOI: http://dx.doi.org/10.1073/pnas.0307752101
  6. Mimno, D. M. and McCallum, A. "Topic models conditioned on arbitrary features with Dirichletmultinomial regression," 411-418. 2008
  7. Hornik, K., & Grun, B. topicmodels: An R package for fitting topic models. Journal of Statistical Software, 40(13), 1-30. 2011.
  8. Steyvers, M., & Griffiths, T. Probabilistic topic models. Handbook of latent semantic analysis, 427(7), 424-440. 2007.
  9. Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84. DOI: http://dx.doi.org/10.1145/2133806.2133826
  10. Shi, C., Cai, Y., Fu, D., Dong, Y., & Wu, B. "A link clustering based overlapping community detection algorithm". Data & Knowledge Engineering, 87, 394-404. 2013. DOI: http://dx.doi.org/10.1016/j.datak.2013.05.004
  11. Pons, P., & Latapy, M. Computing communities in large networks using random walks. In Computer and Information Sciences-ISCIS 2005 (pp. 284-293). Springer Berlin Heidelberg. 2005. DOI: http://dx.doi.org/10.1007/11569596_31
  12. Newman, M. E., & Girvan, M.Finding and evaluating community structure in networks. Physical review E, 69(2), 026113. 2004. DOI: http://dx.doi.org/10.1103/PhysRevE.69.026113