DOI QR코드

DOI QR Code

Numerical simulations of turbulent flow through submerged vegetation using LES

LES를 이용한 침수식생을 통과하는 난류흐름 수치모의

  • Kim, Hyung Suk (Hydro Science and Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology)
  • 김형석 (한국건설기술연구원 수자원하천연구소)
  • Received : 2015.07.20
  • Accepted : 2015.09.11
  • Published : 2015.09.30

Abstract

This study presents numerical simulations of mean flow and turbulence structure of an open channel with submerged vegetation. Filtered Navier-Stokes equations are solved using large-eddy simulation (LES). The immersed boundary method (IBM) is employed based on a Cartesian grid. The numerical result is compared with experimental data of Liu et al. (2008) and shows that simulated results coincided reasonably with experimental data within the average error of 10%. Strong vortices are generated at the interface between vegetated and non-vegetated regions with spanwise extent. The generation of turbulence induced by shear at the interface is interfered with wake turbulence, resulting turbulence intensity maximum. Turbulence produced by shear affects the flow in vegetated region and the penetration depth increases with an increase in the submergence ratio. This result can be used to understand sediment transport mechanisms in the vegetated region.

본 논문에서는 침수조건의 식생이 식재된 개수로의 흐름 및 난류특성을 수치모의하였다. 이를 위해 여과된 Navier-Stokes 방정식을 수치해석 하였고 난류 모형으로 LES 모형을 이용하였다. 식생을 계산격자로 직접 고려하였고 이를 위해 직교격자 기반에 가상경계기법을 적용하였다. 수치모형을 이용하여 계산한 평균흐름을 Liu et al. (2008)의 수리실험데이터와 비교하였고 평균오차 10%내에서 일치하는 것으로 나타났다. 식생영역과 비식생영역 사이에서 강한 와가 생성되는 것을 확인하였고 이는 횡방향에 걸쳐 발생하는 것으로 나타났다. 경계면에서 전단에 의해 유발된 난류는 후류에 의해 발생한 난류성분과 상호작용하여 최대값을 보였다. 전단에 의한 난류는 식생영역 흐름에 영향을 미쳤고 침투깊이는 식생 침수비가 커질수록 증가하였다. 이러한 난류흐름 특성은 식생영역에서 유사거동 메커니즘을 파악하는데 중요한 자료로 활용될 수 있다.

Keywords

References

  1. H. S. Kim, I. Kimura, Y. Shimizu, "Bed morphological changes around a finite patch of vegetation.", Earth Surface Processes and Landforms, Vol. 40, No. 3, pp. 375-388, 2015. DOI: http://dx.doi.org/10.1002/esp.3639
  2. H. Kang, S. U. Choi, "Numerical Investigations of Streamwise Vortical Structures in Fully Vegetated Open-Channel Flows.", Journal of Korean Society of Civil Engineering, Vol. 27, No. 3B, pp. 289-299, 2007.
  3. M. Tal, C. Paola, "Dynamic Single-Thread Channels maintained by the Interaction of Flow and Vegetation.", Geology, Vol. 35, No. 4, pp. 347-350, 2007. DOI: http://dx.doi.org/10.1130/G23260A.1
  4. S. Choi, S. U. Choi, T. Kim, "Numerical Simulation of Mean Flows and Turbulent Structures of Partly-Vegetated Open-Channel Flows using the Non-linear k-${\varepsilon}$ Model.", Journal of Korean Society of Civil Engineering, Vol. 34, No. 3, pp. 813-820, 2014. DOI: http://dx.doi.org/10.12652/Ksce.2014.34.3.0813
  5. T. Stoesser, G. Palau, W. Rodi, P. Diplas, "Large Eddy Simulation of Turbulent Flow Through Submerged Vegetation.", Transport in Porous Media, Vol. 78, pp. 347-365, 2009. DOI: http://dx.doi.org/10.1007/s11242-009-9371-8
  6. Y. Shimizu, T. Tsujimoto, "Numerical analysis of turbulent open channel flow over vegetation layer using k-${\varepsilon}$ turbulence model.", Journal of Hydroscience and Hydraulic Engineering, Vol. 11, No. 2, pp. 59-67, 1994.
  7. Fischer Antze, T. Stoesser, T. Bates, N. R. Olsen, "3D numerical modeling of open-channel flow with submerged vegetation.", Journal of Hydraulic Research, Vol. 39, pp. 303-310, 2001. DOI: http://dx.doi.org/10.1080/00221680109499833
  8. F. Lopze, M. Garcia, "Mean flow and turbulence structure of open-channel flow through non-emergent vegetation.", Journal of Hydraulic Engineering, Vol. 127, No. 5, pp. 392-402, 2001. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(2001)127:5(392)
  9. D. Naot, I. Nezu, H. Nakagawa, "Hydrodynamic behavior of partly vegetated open-channels.", Journal of Hydraulic Engineering, Vol. 122, No. 11, pp. 625-633, 1996. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(1996)122:11(625)
  10. S. Choi, H. Kang, "Numerical investigations of mwan flow and turbulence structures of partly-vegetated open channel flows using the reynolds stress model.", Journal of Hydraulic Research, Vol. 55, No. 2, pp. 203-217, 2006. DOI: http://dx.doi.org/10.1080/00221686.2006.9521676
  11. J. Cui, V. S. Neary, "Large eddy simulation of fully developed flow through vegetation."Proc. of 5nd IAHR International conference on hydroinformatics, Cardiff, 2002.
  12. T. Stoesser, S. J. Kim, P. Diplas, "Turbulent flow through idealized emergent vegetation.", Journal of Hydraulic Engineering, Vol. 136, No. 12, pp. 1003-1017, 2010. DOI: http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000153
  13. D. Liu, P. Diplas, J. D. Fairbanks, C. C. Hodges, "An experimental study of flow through rigid vegetation.", Journal of Geophyisical Research, Vol. 113, F04015, 2008. DOI: http://dx.doi.org/10.1029/2008JF001042
  14. J. Smagorinsky, "General circulation experiments with the primitive equations, Part I:The basic experiment.", Monthly Weather Review, Vol. 91, pp. 99-152, 1963. DOI:http://dx.doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  15. E. Leveque, F. Toschi, L. Shao, J. P. Bertoglio, "Shear-improved Smagorinsky model for large-eddy simulation of wall-bounded turbulent flows.", Journal of Fluid Mechanics, Vol. 570, pp. 497-502, 2005. DOI: http://dx.doi.org/10.1017/S0022112006003429
  16. D. K. Lilly, "A proposed modification of the Germano subgrid-scale closure method.", Physics of Fluids A, Vol. 4, pp. 633-635, 1992. DOI: http://dx.doi.org/10.1063/1.858280
  17. G. P. Palau, T. Stoesser, A. Rummel, W. Rodi, "Turbulent shallow flow through emergent vegetation.", Proc. of International conference on ecohydraulics, Tempe, 2007.
  18. S. Ikeda, N. Kanazawa, K. Ohta, "Flow over flexible vegetation and 3D structure of organized vortex associated with honami.", Journal of Hydraulic, Coastal and Environmental Engineering, Vol. 515, pp. 33-43, 1995. DOI: http://doi.org/10.2208/jscej.1995.515_33
  19. M. Ghisalberti, H. M. Nepf, "Mixing layers and coherent structutres in vegetated aquatic flows.", Journal of Geophyisical Research, Vol. 107, 3-1-3-11, 2002. DOI: http://dx.doi.org/10.1029/2001JC000871
  20. H. M. Nepf, E. R. Vivoni, "Flow structure in depth-limited, vegetated flow.", Journal of Geophyisical Research, Vol. 105, pp. 28547-28557, 2000. DOI: http://dx.doi.org/10.1029/2000JC900145
  21. I. Nezu, M. Sanjou, "Turbulence structure and coherent motion in vegetated canopy open-channel flows.", Journal of Hydro-environment Research, Vol. 2, pp. 2, pp. 62-90, 2008. DOI: http://dx.doi.org/10.1016/j.jher.2008.05.003
  22. C. A. M. E. Wilson, T. Stoesser, P. Bates, A. B. Pinzen, "Open channel flow through different forms of submerged flexible vegetation.", Journal of Hydraulic Engineering, Vol. 129, pp. 847-853, 2003. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(2003)129:11(847)