DOI QR코드

DOI QR Code

Preprocessing-based speed profile calculation algorithm for radio-based train control

무선통신기반 열차간격제어를 위한 전처리 기반 속도프로파일 계산 알고리즘

  • Oh, Sehchan (Metropolitan Transit System Research Division, Korea Railroad Research Institute) ;
  • Kim, Kyunghee (Metropolitan Transit System Research Division, Korea Railroad Research Institute) ;
  • Kim, Minsoo (Metropolitan Transit System Research Division, Korea Railroad Research Institute)
  • 오세찬 (한국철도기술연구원 광역도시철도시스템연구실) ;
  • 김경희 (한국철도기술연구원 광역도시철도시스템연구실) ;
  • 김민수 (한국철도기술연구원 광역도시철도시스템연구실)
  • Received : 2015.07.29
  • Accepted : 2015.09.11
  • Published : 2015.09.30

Abstract

Radio-based train control system has driving headway shortening effect by real-time train interval control using two-way radio communication between onboard and wayside systems, and reduces facility investment because it does not require any track-circuit. Automatic train protection(ATP), the most significant part of the radio-based train control system, makes sure a safe distance between preceding and following trains, based on real-time train location tracing. In this paper, we propose the overall ATP train interval control algorithm to control the safe interval between trains, and preprocessing-based speed profile calculation algorithm to improve the processing speed of the ATP. The proposed speed profile calculation algorithm calculates the permanent speed limit for track and train in advance and uses as the most restrictive speed profile. If the temporary speed limit is generated for a particular track section, it reflects the temporary speed limit to pre-calculated speed profile and improves calculation performance by updating the speed profile for the corresponding track section. To evaluate the performance of the proposed speed profile calculation algorithm, we analyze the proposed algorithm with O-notation and we can find that it is possible to improve the time complexity than the existing one. To verify the proposed ATP train interval control algorithm, we build the train interval control simulator. The experimental results show the safe train interval control is carried out in a variety of operating conditions.

무선통신기반 열차제어시스템은 차상과 지상과의 양방향 무선통신을 기반으로 실시간 열차간격제어가 가능하므로 운전시격 단축 효과가 있으며 궤도회로를 사용하지 않기 때문에 설비투자를 절감 할 수 있다. 무선통신기반 열차제어시스템에서 가장 중요한 부분인 자동열차방호(ATP: Automatic Train Protection)는 실시간 열차위치 추적을 기반으로 선행열차와 후행열차간의 안전한 간격제어를 수행한다. 본 논문은 도시철도용 무선통신기반 열차제어시스템의 열차간격제어를 위한 전체적인 ATP 열차간격제어 알고리즘과 ATP의 처리속도 향상을 위해 전처리 기반 속도프로파일 계산 알고리즘을 제안한다. 제안된 속도프로파일 계산 알고리즘은 사전에 선로와 열차의 영구속도제한에 해당하는 프로파일을 미리 계산하여 가장제한적인 속도프로파일로 활용한다. 만약 운행 중 특정 노선 구간에 임시속도제한이 발생하는 경우 미리 계산된 영구속도프로파일에 임시속도제한을 반영하여 해당 구간의 속도프로파일을 업데이트함으로써 계산효율을 높일 수 있다. 제안된 속도프로파일 계산 알고리즘의 성능을 평가하기 위해 시간복잡도 O-notation으로 분석하였으며 그 결과 기존에 비해 시간 복잡도를 개선할 수 있음을 확인하였다. 또한 ATP 열차간격제어 검증을 위해 열차간격제어 시뮬레이터를 제작하였으며 실험결과를 통해 다양한 운영상황에서 안전한 열차간격제어가 이루어지고 있음을 확인하였다.

Keywords

References

  1. Yoon, Yong-Ki, et al. "Development of ATP Train Separation Control Simulator for Radio-based Train Control System." Journal of the Korean society for railway 15.1 29-36, (2012). https://doi.org/10.7782/JKSR.2012.15.1.029
  2. Quan, Zhong-Hua, et al. "Modeling for CBTC car-borne ATP/ATO functions and its applications." SICE Annual Conference (SICE), 2011 Proceedings of. IEEE, 2011.
  3. Kaixia, Dong, Liu Xiaojuan, and Zhu Yunyan. "Simulation Study of ATP Subsystem of CBTC System in Urban Mass Transit [J]." Railway Signalling & Communication 4 (2011): 004.
  4. Oh, Sehchan, et al. "Design of ATP functions and communication interface specifications for Korean Radio-based Train Control System." Control, Automation and Systems (ICCAS), 2013 13th International Conference on. IEEE, 2013. DOI: http://dx.doi.org/10.1109/iccas.2013.6704161
  5. Oh, Sehchan, et al. "ATP functional allocation for Korean radio based train control system." Control, Automation and Systems (ICCAS), 2012 12th International Conference on. IEEE, 2012.
  6. Oh, Sehchan, Yongki Yoon, and Jonghyen Baek. "Development of Wireless Communication based Train Separation Control Simulator." Conference of Korean Society for Railway. 2011.
  7. Xiangqi, Kong, et al. "Design and Implementation of ATS and ATP/ATO Interface in Chongqing Light Metro Line 3." Railway Signalling & Communication (2013): S1.
  8. IEEE 1474.1 IEEE Standard for Communication -Based Train Control(CBTC) Performance and Functional Requirements.
  9. IEEE 1474.3 IEEE Recommended Practice for Communication-Based Train Control(CBTC) System Design and Functional Allocations.
  10. Vincze, Bela, and Geza Tarnai. "Development and analysis of train brake curve calculation methods with complex simulation." Advances in Electrical and Electronic Engineering 5.1-2 174-177, 2011.
  11. Barney, David, David Haley, and George Nikandros. "Calculating train braking distance." Proceedings of the Sixth Australian workshop on Safety critical systems and software-Volume 3. Australian Computer Society, Inc., 2001.