DOI QR코드

DOI QR Code

Application of Pulsed Plasmas for Nanoscale Etching of Semiconductor Devices : A Review

나노 반도체 소자를 위한 펄스 플라즈마 식각 기술

  • Yang, Kyung Chae (School of Advanced Materials Science and Engineering, SungKyunKwan University (SKKU)) ;
  • Park, Sung Woo (School of Advanced Materials Science and Engineering, SungKyunKwan University (SKKU)) ;
  • Shin, Tae Ho (School of Advanced Materials Science and Engineering, SungKyunKwan University (SKKU)) ;
  • Yeom, Geun Young (School of Advanced Materials Science and Engineering, SungKyunKwan University (SKKU))
  • 양경채 (성균관대학교 신소재공학부) ;
  • 박성우 (성균관대학교 신소재공학부) ;
  • 신태호 (성균관대학교 신소재공학부) ;
  • 염근영 (성균관대학교 신소재공학부)
  • Received : 2015.12.19
  • Accepted : 2015.12.30
  • Published : 2015.12.31

Abstract

As the size of the semiconductor devices shrinks to nanometer scale, the importance of plasma etching process to the fabrication of nanometer scale semiconductor devices is increasing further and further. But for the nanoscale devices, conventional plasma etching technique is extremely difficult to meet the requirement of the device fabrication, therefore, other etching techniques such as use of multi frequency plasma, source/bias/gas pulsing, etc. are investigated to meet the etching target. Until today, various pulsing techniques including pulsed plasma source and/or pulse-biased plasma etching have been tested on various materials. In this review, the experimental/theoretical studies of pulsed plasmas during the nanoscale plasma etching on etch profile, etch selectivity, uniformity, etc. have been summarized. Especially, the researches of pulsed plasma on the etching of silicon, $SiO_2$, and magnetic materials in the semiconductor industry for further device scaling have been discussed. Those results demonstrated the importance of pulse plasma on the pattern control for achieving the best performance. Although some of the pulsing mechanism is not well established, it is believed that this review will give a certain understanding on the pulsed plasma techniques.

Keywords

References

  1. S. Samukawa, Feature profile evolution in plasma processing using on-wafer monitoring system, Springer Japan, Tokyo (2014).
  2. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Hoboken, NJ (2005).
  3. R. Doering and Y. Nishi, Handbook of Semiconductor Manufacturing Technology, CRC Press, Cleveland (2007).
  4. P. Chabert and N. Braithwaite, Physics of Radio- Frequency Plasmas, Cambridge University Press, Cambridge (2011).
  5. S. H. Lee, P. K. Tiwari, J. K. Lee, Plasma Sources Sci. Technol., 18 (2009) 025024. https://doi.org/10.1088/0963-0252/18/2/025024
  6. M. H. Jeon, A. K. Mishra, S.-K. Kang, K. N. Kim, I. J. Kim, S. B. Lee, T. H. Sin, G. Y. Yeom, Curr. Appl. Phys., 13 (2013) 1830. https://doi.org/10.1016/j.cap.2013.07.009
  7. M. H. Jeon, K. C. Yang, K. N. Kim, G. Y. Yeom, Vacuum 121 (2015) 294. https://doi.org/10.1016/j.vacuum.2015.05.009
  8. S. H. Song, M. J. Kushner, J. Vac. Sci. Technol. A 32 (2014) 021306. https://doi.org/10.1116/1.4863948
  9. J. K. Kim, S. I. Cho, S. H. Lee, C. K. Kim, K. S. Min, S. H. Kang, G. Y. Yeom, J. Vac. Sci. Technol., A 31 (2013) 061310.
  10. X. Zhao, J. A. del Alamo, IEEE Electron Device Lett., 35 (2014) 521. https://doi.org/10.1109/LED.2014.2313332
  11. W. Kim, J. Jeong, Y. Kim, W. C. Lim, J. H. Kim, J. H. Park, H. J. Shin, Y. S. Park, K. S. Kim, S. H. Park, Y. J. Lee, K. W. Kim, H. J. Kwon, H. L. Park, H. S. Ahn, S. C. Oh, J. E. Lee, S. O. Park, S. Choi, H. K. Kang, C. Chung, IEDM Tech. Dig., (2011) 531.
  12. P. Bodart, M. Brihoum, G. Cunge, O. Joubert, N. Sadeghi, J. Appl. Phys., 110 (2011) 113302. https://doi.org/10.1063/1.3663443
  13. K. Eriguchi, Y. Nakakubo, A. Matsuda, Y. Takao, K. Ono, Jpn. J. Appl. Phys., 49 (2010) 056203. https://doi.org/10.1143/JJAP.49.056203
  14. S. Banna, A. Agarwal, G. Cunge, M. Darnon, E. Pargon, O. Joubert, J. Vac. Sci. Technol., A 30 (2012) 040801.
  15. D. J. Economou, J. Phys. D: Appl. Phys., 47 (2014) 303001. https://doi.org/10.1088/0022-3727/47/30/303001
  16. A. Agarwal, P. J. Stout, S. Banna, S. Rauf, K. Collins, J. Vac. Sci. Technol., A 29 (2011) 011017
  17. R. W. Boswell, D. Henry, Appl. Phys. Lett., 47 (1985) 1095. https://doi.org/10.1063/1.96340
  18. R. W. Boswell, R. K. Porteous, J. Appl. Phys., 62 (1987) 3123. https://doi.org/10.1063/1.339362
  19. C. Grabowski, J. M. Gahl, J. Appl. Phys., 70 (1991) 1039. https://doi.org/10.1063/1.349689
  20. S. Samukawa, S. Furuoya, Appl. Phys. Lett., 63 (1993) 2044. https://doi.org/10.1063/1.110586
  21. K. Takahashi, M. Hori, T. Goto, Jpn. J. Appl. Phys., 32 (1993) L1088. https://doi.org/10.1143/JJAP.32.L1088
  22. C. P. Etienne, M. Darnon, L. Vallier, E. Pargon, G. Cunge, F. Boulard, O. Joubert, S. Banna, T. Lill, J. Vac. Sci. Technol., B 28 (2010) 926.
  23. A. Mishra, J. S. Seo, K. N. Kim, G. Y. Yeom, J. Phys., D 46 (2013) 235203.
  24. D. Borah, M. T. Shaw, S. Rasappa, R. A. Farrell, C. O'Mahony, C. M. Faulkner, M. Bosea, P. Gleeson, J. D. Holmes, M. A. Morris, J. Phys., D: Appl. Phys., 44 (2011) 174012. https://doi.org/10.1088/0022-3727/44/17/174012
  25. A. Agarwal, S. Rauf, K. Collins, J. Appl. Phys., 112 (2012) 033303. https://doi.org/10.1063/1.4745877
  26. J. Matsui, N. Nakano, Z. Lj. Petrovic', T. Makabea, Appl. Phys. Lett, 78 (2001) 883. https://doi.org/10.1063/1.1347021
  27. S. Banna, A. Agarwal, K. Tokashiki, H. Cho, S. Rauf, V. Todorow, K. Ramaswamy, K. Collins, P. Stout, J.-Y. Lee, J. Yoon, K. Shin, S.-J. Choi, H.- S. Cho, H.-Y. Kim, C. Lee, D. Lymberopoulos, IEEE Trans. Plasma Sci., 37 (2009) 1730. https://doi.org/10.1109/TPS.2009.2028071
  28. K. Tokashiki, H. Cho, S. Banna, J.-Y. Lee, K. Shin, V. Todorow, W.-S. Kim, K. Bai, S. Joo, J.-D. Choe, K. Ramaswamy, A. Agarwal, S. Rauf, K. Collins, S. Choi, H. Cho, H. J. Kim, C. Lee, D. Lymberopoulos, J. Yoon, W. Han, J.-T. Moon, Jpn. J. Appl. Phys., 48 (2009) 08HD01.
  29. C. J. Choi, O. S. Kwon, Y. S. Seol, Jpn. J. Appl. Phys., 37 (1998) 6894. https://doi.org/10.1143/JJAP.37.6894
  30. Y. Ichihashi, Y. Ishikawa, R. Shimizu, S. Samukawa, J. Vac. Sci. Technol., B 28 (2010) 577.
  31. T. Ohmori, T. K. Goto, T. Kitajima, T. Makabe, Appl. Phys. Lett., 83 (2003) 4637. https://doi.org/10.1063/1.1630163
  32. M. V. Malyshev, V. M. Donnelly, J. Appl. Phys., 87 (2000) 1642. https://doi.org/10.1063/1.372072
  33. M. V. Malyshev, V. M. Donnelly, J. Appl. Phys., 90 (2001) 1130. https://doi.org/10.1063/1.1381044
  34. R. Westerman, D. Johnson, S. Lai, U.S. patent 6, 905, 626 (2005).
  35. T. Mukai, H. Hada, S. Tahara, Hiroaki Yoda, S. Samukawa, Jpn. J. Appl. Phys., 45 (2006) 5542. https://doi.org/10.1143/JJAP.45.5542
  36. A. Agarwal, S. Rauf, K. Collins, Appl. Phys. Lett, 99 (2011) 021501. https://doi.org/10.1063/1.3610466
  37. K. Nojiri, Dry Etching Technology for Semiconductors, Springer, Switzerland (2015).
  38. C. O. Jung, K. K. Chi, B. G. Hwang, J. T. Moon, M. Y. Lee, J. G. Lee, Thin Solid Films, 341 (1999) 112. https://doi.org/10.1016/S0040-6090(98)01522-3
  39. M. Miyake, N. Negishi, M. Izawa, K. Yokogawa, M. Oyama, T. Kanekiyo, Jpn. J. Appl. Phys., 48 (2009) 08HE01.
  40. C. P. Etienne, M. Darnon, P. Bodart, M. Fouchier, G. Cunge, E. Pargon, L. Vallier, O. Joubert, S. Banna, J. Vac. Sci. Technol., B 31(2013) 01120.
  41. S. Samukawa, K. Terada, J. Vac. Sci. Technol., B 12 (1994) 3300.
  42. S. Samukawa, H. Ohtake, T. Mieno, J. Vac. Sci. Technol., A 14 (1996) 3049.
  43. S. Samukawa, Appl. Phys. Lett., 64 (1994) 3398. https://doi.org/10.1063/1.111290
  44. T. H. Ahn, K. Nakamura, H. Sugai, Plasma Sources Sci. Technol., 5 (1996) 139. https://doi.org/10.1088/0963-0252/5/2/005
  45. M. Sumiya, H. Tamura, S. Watanabe, Jpn. J. Appl. Phys., 41 (2002) 856. https://doi.org/10.1143/JJAP.41.856
  46. N. Fugiwara, T. Maruyama, H. Miyatake, Jpn. J. Appl. Phys., 37 (1998) 2302. https://doi.org/10.1143/JJAP.37.2302
  47. T. Maruyama, N. Fujiwara, S. Ogino, H. Miyatake, Jpn. J. Appl. Phys., 37 (1998) 2306. https://doi.org/10.1143/JJAP.37.2306
  48. T. Ono, T, Mizutani, Y. Goto, T. Kure, Jpn. J. Appl. Phys., 39 (2000) 5003. https://doi.org/10.1143/JJAP.39.5003
  49. K. Ono, M. Tuda, Thin Solid Flims, 374 (2000) 208. https://doi.org/10.1016/S0040-6090(00)01152-4
  50. M. Matsui, M. Morimoto, N. Ikeda, K. Yokogawa , Jpn. J. Appl. Phys., 53 (2014) 03DD04. https://doi.org/10.7567/JJAP.53.03DD04
  51. C. P. Etienne, E. Pargon, S. David, M. Darnon, L. Vallier, O. Joubert, S. Banna, J. Vac. Sci. Technol., B 30 (2012) 1071.
  52. A. Sankaran, M. J. Kushner, Appl. Phys. Lett., 82 (2003) 1824. https://doi.org/10.1063/1.1562333
  53. S. Takagi, S. Onoue, K. Nishitani, T. Shinnmura, Y. Shigesato, Jpn. J. Appl. Phys., 54 (2015) 036501.
  54. B. S. Kwon, J. S. Kim, N.-E. Lee, J. W. Shon, J. Electrochem. Soc., 157 (2010) D135. https://doi.org/10.1149/1.3275710
  55. B. S. Kwon, J. S. Kim, H. K. Moon, N.-E. Lee, Thin Solid Films, 518 (2010) 6451. https://doi.org/10.1016/j.tsf.2010.04.060
  56. A. Agarwal, P. J. Stout, S. Banna, S. Rauf, K. Tokashiki, J. Y. Lee, K. Collins, J. Appl. Phys., 106 (2009) 103305. https://doi.org/10.1063/1.3262616
  57. P. Subramonium, M. K. Kushner, J. Appl. Phys., 96 (2004) 82. https://doi.org/10.1063/1.1751636
  58. T. Tatsumi, H. Hayashi, S. Morishita, S. Noda, M. Okigawa, N. Itabashi, Y. Hikosaka, M. Inoue, Jpn. J. Appl. Phys., 37 (1998) 2394. https://doi.org/10.1143/JJAP.37.2394
  59. M. Wang, M. K. Kushner, J. Appl. Phys., 107 (2010) 023309. https://doi.org/10.1063/1.3290873
  60. T. F. Yen, K. J. Chang, K.-F. Chiu, Microelectron. Eng., 82 (2005) 129. https://doi.org/10.1016/j.mee.2005.07.001
  61. M. Darnon, C. P. Etienne, E. Pargon, G. Cunge, L. Vallier, P. Bodart, M. Haas, S. Banna, T. Lill, O. Jouberta, ECS Trans., 27 (2010) 717.
  62. T. Mukai, H. Hada, S. Tahara, H. Yoda, S. Samukawa, Jpn. J. Appl. Phys., 45 (2006) 5542. https://doi.org/10.1143/JJAP.45.5542
  63. T. Mukai, N. Ohshima, H. Hada, S. Samukawa, J. Vac. Sci. Technol., A 25 (2007) 432.
  64. K. Sugiura, S. Takahashi, M. Amano, T. Kajiyama, M. Iwayama, Y. Asao, N. Shimomura, T. Kishi, S. Ikegawa, H. Yoda, A. Nitayama, Jpn. J. Appl. Phys., 48 (2009) 08HD02.
  65. T. Ogata, K. Nakata, T. Ono, Hitachi Rev., 48 (1999) 6.
  66. V. M. Donnelly, A. Kornblit, J. Vac. Sci. Technol., A 31 (2013) 050825.
  67. M. H. Jeon, D. H. Yun, K. C. Yang, J. Y. Youn, D. Y. Lee, T. H. Shim, J. G. Park, G. Y. Yeom, J. Nanosci. Nanotechnol., 14 (2014) 9680. https://doi.org/10.1166/jnn.2014.10185
  68. M. H. Jeon, J. Y. Youn, K. C. Yang, D. H. Youn, D. Y. Lee, T. H. Shim, J. G. Park, G. Y. Yeom, J. Nanosci. Nanotechnol., 14 (2014) 9541. https://doi.org/10.1166/jnn.2014.10190
  69. K. C. Yang, M. H. Jeon, G.Y. Yeom, Jpn. J. Appl. Phys., 54 (2015) 01AE01. https://doi.org/10.7567/JJAP.54.01AE01
  70. M. H. Jeon, H. J. Kim, K. C. Yang, S. K. Kang, K. N. Kim, G. Y. Yeom, Jpn. J. Appl. Phys., 52 (2013) 05EB03. https://doi.org/10.7567/JJAP.52.05EB03
  71. Terabit Memory Development 1st year of 1st phase (2010) Work Shop.
  72. STT-MRAM 1st year of 1st phase (2009) 2nd Work Shop.

Cited by

  1. Study of Dry Etching of SnO thin films using a Inductively Coupled Plasma vol.49, pp.1, 2016, https://doi.org/10.5695/JKISE.2016.49.1.98