DOI QR코드

DOI QR Code

Toxicity evaluation based on particle size, contact angle and zeta potential of SiO2 and Al2O3 on the growth of green algae

  • Received : 2015.01.23
  • Accepted : 2015.12.30
  • Published : 2015.12.25

Abstract

In this investigation, ecotoxicity of nano and micro metal oxides, namely silica ($SiO_2$) and alumina ($Al_2O_3$), on the growth of green algae (Porphyridium aerugineum Geitler) is discussed. Effects of nano and micro particles on the growth, chlorophyll content and protein content of algae are analysed using standard protocols. Results indicate that $SiO_2$ nano and micro $SiO_2$ particles are non-toxic to P. aerugineum Geitler up to a concentration of 1000 mg/L. In addition, $Al_2O_3$ microparticles are less toxic to P. aerugineum Geitler, whereas $Al_2O_3$ nanoparticles are found to be highly toxic at 1000 mg/L. Moreover, $Al_2O_3$ nanoparticles decrease the growth, chlorophyll content, and protein content of tested algae. In addition, zeta potential and contact angle are also important in enhancing the toxicity of metal oxide nanoparticles in aquatic environment. This study highlights a new insight into toxicity evaluation of nanoparticles on beneficial aquatic organisms such as algae.

Keywords

Acknowledgement

Supported by : Defence Research and Development Organisation

References

  1. Aruoja, V., Dubourguier, H.C. and Kasemets, K. (2008), "Toxicity of nanoparticles of CuO, ZnO and $TiO_2$ to microalgae Pseudokirchneriella subcapitata", Sci. Total Environ., 407, 1461-1468.
  2. Beganskiene, A., Sirutkaitis, V., Kurtinaitiene, M., Juskenas, R. and Kareiva, A. (2004), "FTIR, TEM and NMR investigations of stober silica nanoparticles", Mater. Sci. Medziagotyra, 10, 287-290.
  3. Chandradass, J. and Balasubramanian, M. (2006), "Sol gel processing of alumina fibres", J. Mater. Proc. Technol., 173, 275-280. https://doi.org/10.1016/j.jmatprotec.2005.11.030
  4. Chen, K.L. and Elimelech, M. (2007), "Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions", J. Colloid Interface Sci., 309, 126-134. https://doi.org/10.1016/j.jcis.2007.01.074
  5. Cheng, S.H., Lee, C.H., Chen, M.C., Souris, J.S., Tseng, F.G., Yang, C.S., Mou, C.Y., Chen, C.T. and Lo, L.W. (2010), "Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics-the trio of imaging, targeting and therapy", J. Mater. Chem., 20, 6149-6157. https://doi.org/10.1039/c0jm00645a
  6. Fargasova, A. (2001), "Interactive effect of manganese, molybdenum, nickel, copper I and II and vanadium on the freshwater alga Scenedesmus quadricauda", Bull. Environ. Contam. Toxicol., 67, 688-695.
  7. Filella, M. and Buffle, J. (1993), "Factors controlling the stability of submicron colloids in natural waters", Colloids Surf A: Physicochem. Eng. Aspects, 73, 255-273. https://doi.org/10.1016/0927-7757(93)80020-F
  8. Handy, R.D., Kammer, F.V., Lead, J.R., Hassellov, M., Owen, R. and Crane, M. (2008a), "The ecotoxicology and chemistry of the manufactured nanoparticles", Ecotoxicology, 17, 287-314, https://doi.org/10.1007/s10646-008-0199-8
  9. Handy, R.D., Owen, R. and Valsami-Jones, E. (2008b), "The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs", Ecotoxicology, 17, 315-325. https://doi.org/10.1007/s10646-008-0206-0
  10. Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.C. and Kahru, A. (2008), "Toxicity of nanosized and bulk ZnO, CuO and $TiO_2$ to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus", Chemosphere, 71, 1308-1316. https://doi.org/10.1016/j.chemosphere.2007.11.047
  11. Hoeckel, V., DeSchamphelaere, K., Vander Meeren, K.A.C., Lucas, P. and Janssen, S.C.R. (2008), "The ecotoxicity of silica nanoparticles to the alga Pseudokirchneriella subcapitata: importance of surface area", Environ. Toxicol. Chem., 27, 127-136.
  12. Hu, C.W., Li, M., Cui, Y.B., Lia, D.S., Chen, J. and Yang, L.Y. (2010), "Toxicological effects of $TiO_2$ and ZnO nanoparticles in soil on earthworm Eisenia fetida", Soil Biol. Biochem., 42, 586-591. https://doi.org/10.1016/j.soilbio.2009.12.007
  13. Huang, C.P., Cha, D.K. and Ismat, S.S. (2005), "Progress report: short term chronic toxicity of photocatalytic nanoparticles to bacteria, algae, and zooplankton", EPA Grant Number: R831721.
  14. Hund-Rinke, K. and Simon, M. (2006), "Ecotoxic effect of photocatalytic active nanoparticles ($TiO_2$) on algae and daphnids", Environ. Sci. Pollut. Res., 13, 225-232. https://doi.org/10.1065/espr2006.06.311
  15. Jeng, H.A. and Swanson, J. (2006), "Toxicity of metal oxide nanoparticles in mammalian cells", J Environ Sci Health, Part A: Environ. Sci. Eng., 41, 2699-2711. https://doi.org/10.1080/10934520600966177
  16. Jiang, W., Mashayekhi, H. and Xing, B. (2009), "Bacterial toxicity comparison between nano- and micro-scaled oxide particles", Environ. Pollut., 157, 1619-1625. https://doi.org/10.1016/j.envpol.2008.12.025
  17. Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernades, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J. and Lean, J.R. (2008), "Nanomaterials in the environment: behavior, fate, bioavailability and effects", Environ. Toxicol. Chem., 27, 1825-1851. https://doi.org/10.1897/08-090.1
  18. Knox, J.P. (1995), "The extracellular-matrix in higher-plants 4. Developmentally- regulated proteoglycans and glycoproteins of the plant-cell surface", J. FASEB., 9, 1004-1012. https://doi.org/10.1096/fasebj.9.11.7544308
  19. Lin, D.H., Tian, X.L., Wu, F.C. and Xing, B.S. (2010), "Fate and transport of engineered nanomaterials in the environment", J. Environ. Qual., 39, 1896-1908. https://doi.org/10.2134/jeq2009.0423
  20. Lowry, O.H., Rosebrough, N.J., Farr, L.A. and Randall, R.J. (1951), "Protein measurement with the folin phenol reagent", J. Biol. Chem., 265-275.
  21. Manivasakan, P., Rajendran, V., Rauta, P.R., Sahu, B.B. and Panda, B.K. (2011), "Effect of mineral acids on the production of alumina nanopowder from raw bauxite", Powder Technol., 211, 77-84. https://doi.org/10.1016/j.powtec.2011.03.037
  22. Marcone, G.P.S., Oliveira, A.C., Almeida, G., Umbuzeiro, G.A. and Jardim, W.F. (2012), "Ecotoxicity of $TiO_2$ to Daphnia similis under irradiation", J. Hazard. Mater., 211-212, 436-442. https://doi.org/10.1016/j.jhazmat.2011.12.075
  23. Mueller, N.C. and Nowack, B. (2008), "Exposure modeling of engineered nanoparticles in the environment", Environ. Sci. Technol., 42, 4447-4453. https://doi.org/10.1021/es7029637
  24. Naskar, M.K., Chatterjee, M. and Lakshmi, N.S. (2002), "Sol-emulsiongel synthesis of hollow mullite microspheres", J. Mater. Sci., 37, 343-348. https://doi.org/10.1023/A:1013656413578
  25. Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A., Quigg, A., Santschi, P.H. and Sigg, L. (2008), "Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi", Ecotoxicology, 17, 372-386. https://doi.org/10.1007/s10646-008-0214-0
  26. Oberdorster, G., Oberdorster, E. and Oberdorster, J. (2005), "Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles", Environ. Hlth. Perspect., 113, 823-839. https://doi.org/10.1289/ehp.7339
  27. Organisation for Economic Cooperation and Development (1984), "Algal growth inhibition test OECD guidelines for testing of chemicals", 201, Paris, France.
  28. Saniger, J.M. (1995), "Al-O infrared vibrational frequencies of c-$A1_2O_3$", Mater. Lett., 22, 109-113. https://doi.org/10.1016/0167-577X(94)00234-7
  29. Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Prabu, P., Rajendran, V. and Kannan, N. (2012), "Growth and physiological responses of maize (Zea mays L) to porous silica nanoparticles in soil", J. Nanopart. Res., 14, 1294. https://doi.org/10.1007/s11051-012-1294-6
  30. Tarte, P. (1967), "Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of $AlO_4$ tetrahedra and $AlO_6$ octahedra Spectrochim", Spectrochimica Acta Part A: Molecular Spectroscopy, 23, 2127-2143. https://doi.org/10.1016/0584-8539(67)80100-4
  31. Wang, W., Gu, B., Liang, L. and Hamilton, W. (2003), "Fabrication of near infrared photonic crystals using highly-mono dispersed sub micrometer $SiO_2$ spheres", J. Phys. Chem. B, 107, 12113-12117. https://doi.org/10.1021/jp034161b
  32. Xiong, D., Fang, T., Yu, L., Sima, X. and Zhu, W. (2011), "Effects of nano-scale $TiO_2$, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage", Sci. Total Environ., 409, 1444-1452. https://doi.org/10.1016/j.scitotenv.2011.01.015
  33. Yee, N., Benning, L.G., Phoenix, V.R. and Ferris, F.G. (2004), "Characterization of metal-Cyanobacteria sorption reactions: a combined Macroscopic and infrared spectroscopic inves- tigation", Environ. Sci. Technol., 38, 775-782. https://doi.org/10.1021/es0346680
  34. Yuvakkumar, R., Elango, V., Rajendran, V. and Kannan, N. (2012), "High-purity nano silica powder from rice husk using a simple chemical method", J Exp Nanosci, ID: 656709.
  35. Zhang, W.X. (2003), "Nanoscale iron particles for environmental remediation: an overview", J. Nanopart. Res., 5, 323-332. https://doi.org/10.1023/A:1025520116015

Cited by

  1. Effect of alumina (Al2O3) nanoparticles and macroparticles on Trigonella foenum-graceum L. in vitro cultures: assessment of growth parameters and oxidative stress-related responses vol.9, pp.11, 2015, https://doi.org/10.1007/s13205-019-1954-7
  2. The Response of Microalgae Chlorella sp. to Free and Immobilized ZrO 2 and Mg(OH) 2 Nanoparticles: Perspective from the Growth Characteristics vol.37, pp.6, 2015, https://doi.org/10.1089/ees.2019.0367