DOI QR코드

DOI QR Code

On-site Demonstration of Topographic Surveying Techniques at Open-pit Mines using a Fixed-wing Unmanned Aerial Vehicle (Drone)

고정익 무인항공기(드론)를 이용한 노천광산 지형측량 기술의 현장실증

  • Received : 2015.12.07
  • Accepted : 2015.12.16
  • Published : 2015.12.31

Abstract

This study performed an on-site demonstration of the topographic surveying technique at a large-scale open-pit limestone mine in Korea using a fixed-wing unmanned aerial vehicle (UAV, Drone, SenseFly eBee). 288 sheets of aerial photos were taken by an automatic flight for 30 minutes under conditions of 300 m altitude and 12 m/s speed. Except for 37 aerial photos in which no keypoint was detected, 251 aerial photos were utilized for data processing including correction and matching, then an orthomosaic image and digital surface model with 7 cm grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 4 ground control points measured by differential global positioning system and those determined by fixed-wing UAV photogrammetry revealed that the root mean squared errors were around 15 cm. Because the fixed-wing UAV has relatively longer flight time and larger coverage area than rotary-wing UAVs, it can be effectively utilized in large-scale open-pit mines as a topographic surveying tool.

본 연구에서는 고정익 무인항공기(드론, SenseFly eBee)를 이용하여 국내 대규모 석회석 노천광산에 대한 지형측량을 수행하였다. 비행고도 300 m, 비행속도 12 m/s 조건으로 약 30분간 자동모드 비행을 수행한 결과 현장에서 총 288장의 항공사진을 촬영할 수 있었다. 특이점 추출이 불가능한 37장의 항공사진을 제외한 251장의 항공사진 자료들을 보정하고, 정합한 결과 7 cm 해상도의 정사영상과 수치표면모델 자료를 생성할 수 있었다. 4곳의 지상기준점에 대하여 고정밀 위성측정시스템를 이용하여 측정한 위치 좌표와 고정익 무인항공기 사진측량시스템을 이용하여 추출한 위치 좌표를 비교한 결과 평균 제곱근 오차가 15 cm 내외로 분석되었다. 고정익 무인항공기는 회전익 무인항공기에 비해 상대적으로 비행시간이 길어 넓은 영역의 신속한 지형측량이 가능하므로 대규모 노천광산 현장에서 효과적으로 활용될 수 있을 것이다.

Keywords

References

  1. ASPRS, 1989, ASPRS INTERIM ACCURACY STANDARDS FOR LARGE-SCALE MAPS, American Society of Photogrammetric and Remote Sensing, Vol. 55, pp. 1038-1940.
  2. Cho, S.J., Bang, E.S., Kang, I.M., 2015, Construction of Precise Digital Terrain Model for Nonmetal Open-pit Mine by Using Unmanned Aerial Photograph, Economic and Environmental Geology, Vol. 48, No. 3, 205-212. https://doi.org/10.9719/EEG.2015.48.3.205
  3. Cryderman, C., Bill Mah, S. and Shuflertoski, A., 2014, Evaluation of UAV Photogrammetric accuracy for mapping and earthworks computations, GEOMATICA, Vol. 68, No. 4, 309-317. https://doi.org/10.5623/cig2014-405
  4. Jung, S.H., Lim, H.M., Lee, J.K., 2009, Analysis of the Accuracy of the UAV Photogrammetric Method using Digital Camera, J. of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 27, No. 6, 741-747.
  5. Lee, S., Choi, Y., 2015, Topographic survey at small-scale Open-pit Mines using a Popular Rotary-wing Unmanned Aerial Vehicle(Drone), TUNNEL & UNDERGROUND SPACE, Vol. 25, No. 5, 462-469. https://doi.org/10.7474/TUS.2015.25.5.462
  6. Siebert, S. and Teizer, J., 2014, Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle(UAV) system, Automation in Construction, Vol. 41, 1-14. https://doi.org/10.1016/j.autcon.2014.01.004
  7. Turner, D., Lucieer, A. and Watson, C., 2012, An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery based on structure from motion (SfM) point clouds, Remote Sensing, Vol. 4, No. 5, 1392-1410. https://doi.org/10.3390/rs4051392
  8. Uysal, M., Toprak, A.S. and Polat, N., 2015, DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill, Measurement, Vol. 73, 539-543. https://doi.org/10.1016/j.measurement.2015.06.010
  9. Wang, Q., Wu, L., Chen, S., Shu, D., Xu, Z., Li, F. and Wang, R., 2014, Accuracy Evaluation of 3D Geometry from Low-Attitude UAV Images:A Case Study at Zijin Mine, Proc. of 4th International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS, Suzhou, China, May 14-16, 297-300.

Cited by

  1. Reviews of unmanned aerial vehicle (drone) technology trends and its applications in the mining industry vol.19, pp.4, 2016, https://doi.org/10.1080/12269328.2016.1162115
  2. Estimation of Reservoir Area and Capacity Curve Equation using UAV Photogrammetry vol.24, pp.3, 2016, https://doi.org/10.7319/kogsis.2016.24.3.093
  3. Comparison of Topographic Surveying Results using a Fixed-wing and a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) vol.26, pp.1, 2016, https://doi.org/10.7474/TUS.2016.26.1.024
  4. Mapping hazardous mining-induced sinkhole subsidence using unmanned aerial vehicle (drone) photogrammetry vol.76, pp.4, 2017, https://doi.org/10.1007/s12665-017-6458-3
  5. A New GIS-Based Algorithm to Support Initial Transmitter Layout Design in Open-Pit Mines vol.11, pp.11, 2018, https://doi.org/10.3390/en11113063
  6. Comparison of Communication Viewsheds Derived from High-Resolution Digital Surface Models Using Line-of-Sight, 2D Fresnel Zone, and 3D Fresnel Zone Analysis vol.7, pp.8, 2018, https://doi.org/10.3390/ijgi7080322