DOI QR코드

DOI QR Code

엔드밀링 공정에 의하여 생성된 측벽의 기하학적 특성과 평엔드밀 형상 사이의 관계

Relationship Between Flat End-mill Shape and Geometrical Characteristics in Side Walls Generated by End-milling Process

  • 김강 (국민대학교 기계시스템공학부)
  • Kim, Kang (School of Mechanical Systems Engineering, Kookmin Univ.)
  • 투고 : 2014.10.10
  • 심사 : 2014.11.07
  • 발행 : 2015.01.01

초록

평엔드밀 가공된 측벽 형상에 공구 형상이 미치는 영향에 대하여 알아보고자 한다. 이를 위하여, 공구 형상을 비틀림각, 절삭날 수, 직경으로 구분하여 특징지었으며, 가공면의 기하학적 특성은 서로 직교하는 이송방향 형상과 축방향 형상으로 나누어 고려하였다. 각 방향의 형상 특성은 공구와 공작물 및 절삭날과 공작물의 간섭 영역으로부터 계산한 순간 절삭면적을 바탕으로 추정하였으며, 추정의 타당성을 가공면 형상 및 배분력 측정을 통하여 검증하였다. 연구 결과, 이송방향 형상의 결함은 공구 퇴출 및 공구 경로의 곡률반경이 변하는 구간에서 나타나며, 이외의 구간에서는 축방향 형상의 결함이 주를 이루는 것이 확인되었다. 측벽의 가공정밀도를 향상시키기 위해서는, 상대적으로 직경이 작고, 비틀림각이 큰 절삭날을 많이 갖는 엔드밀을 사용하여 상향절삭 하는 것이 바람직할 것으로 추천된다.

This paper presents the effects of the tool shape on the geometrical characteristics of flat end-milled side walls. A tool shape is characterized by such parameters as helix angle, number of cutting edges, and diameter. The geometrical characteristics of the side walls are represented by the surface profiles in the feed and axial directions, which are orthogonal to each other. The geometrical defects in each direction are estimated based on the instantaneous apparent cutting areas, which are represented by the interference area between the tool and workpiece and that between the cutting edge and workpiece. It is confirmed that a geometrical defect in the feed direction is formed when the tool leaves the workpiece and the curvature of the tool path changes. Defects in the axial direction are also found in the side walls, except for the defect zone in the feed direction. An up-cut using an end-mill with a steeper helix angle, a greater number of cutting edges, and a smaller diameter are thus found to improve the geometrical accuracy of end-milled side walls.

키워드

참고문헌

  1. Kline, W. A., DeVor, R. E. and Lindberg, J. R., 1982, "The Prediction of Cutting Forces in End Milling with Application to Cornering Cuts," Int. J. Mach. Tool Design Research, Vol. 22, pp. 7-22. https://doi.org/10.1016/0020-7357(82)90016-6
  2. Kline, W. A., DeVor, R. E. and Shareef, I. A., 1982, "The Prediction of Surface Accuracy in End Milling," ASME J. of Eng. for Ind., Vol. 104, pp. 272-278. https://doi.org/10.1115/1.3185830
  3. Kline, W. A. and DeVor, R. E., 1983, " The Effect of Runout on Cutting Geometry and Forces in End Milling," Int. J. Mach. Tool Design Research, Vol. 23, pp. 123-140. https://doi.org/10.1016/0020-7357(83)90012-4
  4. Sutherland, J. W. and DeVor, R. E., 1986, "An Improved Method for Cutting Force and Surface Error Prediction in Flexible End Milling Systems," ASME J. of Eng. for Ind., Vol. 108, pp. 269-279. https://doi.org/10.1115/1.3187077
  5. Budak, E. and Altinras, Y., 1994, "Peripheral Milling Conditions for Improved Dimensional Accuracy," Int. J. Mach. Tool Manu., Vol. 34, pp. 907-918. https://doi.org/10.1016/0890-6955(94)90024-8
  6. Elbestawi, M. A., Ismail. F. and Yuen, K. M., 1994, "Surface Topography Characterization in Finish Milling," Int. J. Mach. Tool Manu., Vol. 34, pp. 245-255. https://doi.org/10.1016/0890-6955(94)90104-X
  7. Yang, M. Y. and Choi, J. G., 1997, "On-line Tool Deflection Compensation System for Precision Endmilling," Trans. Korean Soc. Mech. Eng. A, Vol. 21, No. 2, pp. 189-198. https://doi.org/10.22634/KSME-A.1997.21.2.189
  8. Lee, S. K. and Ko, S. L., 1999, "Analysis on the Precision Machining in End Milling Operation by Simulating Surface Generation," J. of the KSPE, Vol. 16, No. 4, pp. 229-236.
  9. Ryu, S. H., Kim, M. T., Choi, D. K. and Chu, C. N., 1999, "Plane Surface Generation with a Flat End Mill," J. of the KSPE, Vol. 16, No. 2, pp. 234-243.
  10. Ryu, S. H., Choi, D. K. and Chu, C. N., 2003, "Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy," J. of the KSPE, Vol. 20, No. 10, pp. 31-40.
  11. Ryu, S. H. and Chu, C. N., 2004, "Form Error Prediction in Side Wall Milling Considering Tool Deflection," J. of the KSPE, Vol. 21, No. 6, pp. 43-51.
  12. Song, T. S., Ko, T. J., Kim, H. S. and Lee, J. H., 2007, "Study on the Change of Cutting Force Direction in Endmilling," J. of the KSPE, Vol. 24, No. 10, pp. 37-45.
  13. Kim, K., 2007, "Unavoidable Geometric Errors in the Side Walls of End-Milled Parts-Flat Surface-," J. of Mech. Sci. and Tech., Vol. 21, No. 1, pp. 48-56. https://doi.org/10.1007/BF03161711
  14. Lee, K. S. and Kim, K., 2008, "Unavoidable Geometric Errors in the Side Walls of End-Milled Parts-Cylindrical Surface-," J. of Mech. Sci. and Tech., Vol. 22, pp. 1-9.
  15. Lee, K. S. and Kim, K., 2009, "Analysis of Unavoidable Geometric Errors in the Side Wall of End-Milled Parts for Corner Surface," J. of Mech. Sci. and Tech., Vol. 23, pp. 525-535. https://doi.org/10.1007/s12206-008-1129-7
  16. Kim, K., 2013, "Effects of Cutting Area on Straightness Characteristics in Side Walls Caused by Form Generation Mechanism in End-Milling Process," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 10, pp. 1269-1278. https://doi.org/10.3795/KSME-A.2013.37.10.1269
  17. Rowe, W. B. and Barash, M. M., 1964, "Computer Method for Investigating the Inherent Accuracy of Centerless Grinding," Int. J. Mach. Tool Des. Res., Vol. 4, pp. 91-116. https://doi.org/10.1016/0020-7357(64)90002-2