DOI QR코드

DOI QR Code

바이오매스(호두껍질) 혼소에 대한 연소 특성에 관한 연구

Combustion Characteristics for Co-firing of Biomass (Walnut Shell)

  • Kim, Jin-Ho (Pusan Clean Coal Center, Dept. of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lee, Byoung-Hwa (PLM team, Boiler R&D center, Doosan Heavy Industries & Construction, LTD.) ;
  • Sh, Lkhagvadorj (Pusan Clean Coal Center, Dept. of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Kim, Sang-In (Pusan Clean Coal Center, Dept. of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Jeon, Chung-Hwan (Pusan Clean Coal Center, Dept. of Mechanical Engineering, Pusan Nat'l Univ.)
  • 투고 : 2014.07.12
  • 심사 : 2014.10.06
  • 발행 : 2015.01.01

초록

본 연구에서는 발전소의 혼합연료로서 바이오매스인 호두껍질(Walnut Shell)에 대한 연소특성을 조사하기 위하여 열중량 분석기(TGA)와 분류층 반응기(DTR)를 이용하여 실험을 수행하였다. 바이오매스 WS는 기존 석탄과 비교하여 낮은 온도 영역에서 활발한 연소반응을 보였고, 활성화 에너지 또한 낮은 값을 가짐으로써 연소반응속도가 더욱 증가함을 확인할 수 있었다. 바이오매스 WS와 역청탄의 혼소에 있어서 고정층 분석에서는 혼소 영향이 선형적으로 나타나는 것을 확인할 수 있었다. 그렇지만 분류층 반응기에서는 바이오매스 혼소율을 5%증가 시에는 UBC가 감소하다가 이후에 다시 UBC가 증가하는 Non-additive 현상을 확인할 수 있었다. 이는 바이오매스의 급격한 연소로 주위에 산소 부족현상이 생겨 석탄의 연소가 지연되는 것을 보여준다. 이 현상을 해결하기 위하여 산소를 증가시켜주었을 때 더 높은 혼소율을 성취할 수 있음을 보여주었다.

Combustion characteristics for co-firing of biomass (Walnut Shell) as blending fuel in coal fired boiler have investigated using thermogravimetric analyser (TGA) and drop tube reactor (DTR). The results show that devolatilization and char combustion for WS occurs at lower temperature than those of existing coals and has lower activation energy value, which is resulting in higher reactivity. When the WS is blended with coal, TGA results show linear profiles depending on blending ratio for each fuel. However, DTR results exist the non-additive phenomena for blending of WS. As blending ratio of WS increase, the UBC decrease at BBR 5%, but the UBC rather increase from BBR 10% due to oxygen deficiency formed from rapid combustion of WS. This paper propose that fuel lean condition by oxygen rich lead to higher blending ratio of biomass by solving the oxygen deficiency condition.

키워드

참고문헌

  1. Demirbas, A., 2004, "Combustion Characteristics of Different Biomass Fuels," Prog Energy Combust Sci, Vol. 30, pp. 219-230. https://doi.org/10.1016/j.pecs.2003.10.004
  2. Spliethoff, H., Unterberger, S. and Hein, K.R.G., 2004, "Status of Co-combustion of Coal and Biomass in Europe," Clean Air: Int J Energy Clean Environ, Vol. 5, No. 4, pp. 57-82.
  3. Baxter, L., 2005, "Biomass-coal Co-combustion: Opportunity for Affordable Renewable Energy," Fuel, Vol. 84 No. 10, pp. 1295-1302. https://doi.org/10.1016/j.fuel.2004.09.023
  4. Gani, A., 2005, "Characteristics of Co-combustion of Low-rank Coal with Biomass," Energy and Fuels, Vol. 19, No. 4, pp.1652-1659. https://doi.org/10.1021/ef049728h
  5. Paulrud, S. and Nilsson, C., 2004, "The Effects of Particle Characteristics on Emissions from Burning Wood Fuel Powder," Fuel, Vol. 83, pp. 813-821. https://doi.org/10.1016/j.fuel.2003.10.010
  6. Lu, G., Yan, Y., Cornwell, S., Whitehouse, M. and Riley, G., 2008, "Impact of Co-firing Coal and Biomass on Flame Characteristics and Stability," Fuel, Vol. 87, pp. 1133-1140. https://doi.org/10.1016/j.fuel.2007.07.005
  7. Peter, M., Gang, L., Thomas, L.B., Yong, Y., Benoît, T. and Sebastien, C., 2009, "Characterization of Biomass and Coal Co-firing on a 3 MWth Combustion Test Facility Using Flame Imaging and Gas/ash Sampling Techniques," Fuel, Vol. 88, pp. 2328-2334. https://doi.org/10.1016/j.fuel.2009.06.027
  8. Sami, M., Annamalai, K. and Wooldridge, M., 2001, "Co-firing of Coal and Biomass Fuel Blends," Progress in Energy and Combustion Science, Vol. 27, pp. 171-214. https://doi.org/10.1016/S0360-1285(00)00020-4
  9. Mun, T.Y., Lee, U.D., Lee, J.W. and Yang, W., 2014, "The study on Process Simulation of Biomass Co-firing in a Pulverized Coal Power Plant," 48th KOSCO symposium.
  10. Liu, H. and Shao, Y., 2010, "Predictions of the Impurities in the $CO_2$ Stream of an Oxy-coal Combustion Plant," Applied Energy, Vol. 87, pp. 3162-3170. https://doi.org/10.1016/j.apenergy.2010.04.014
  11. Jong, W., Nola, G.D., Venneker, B.C.H., Spliethoff, H. and Wo'jtowicz, M.A., 2007, "TG-FTIR Pyrolysis of Coal and Secondary Biomass Fuels: Determination of Pyrolysis Kinetic Parameters for Main Species and NOx Precursors," Fuel, Vol. 86, pp. 2367-2376. https://doi.org/10.1016/j.fuel.2007.01.032
  12. Bradbury, A.G.W., Sakai, Y. and Shafizadeh, F., 1979, "A Kinetic Model for Pyrolysis of Cellulose," J. Appl. Polym. Sci., Vol. 23, pp. 3271-3280. https://doi.org/10.1002/app.1979.070231112
  13. Coats, A.W. and Redfern, J.P., 1964, "Kinetic Parameters from Thermogravimetric Data," Nature, Vol. 201, pp. 68-69. https://doi.org/10.1038/201068a0
  14. Sait, H.H., Hussain, A., Salema, A.A. and Ani, F.N., 2012, "Pyrolysis and Combustion Kinetics of Date Palm Biomass using Thermogravimetric Analysis," Bioresource Technology, Vol. 118, pp. 382-389. https://doi.org/10.1016/j.biortech.2012.04.081
  15. Ryu, J.S., Kim, K.S. and Park, S.J., 2011, "A Study on Combustion Characteristics of Wood Biomass for Cogeneration Plant," Appl. Chem. Eng., Vol. 22, No. 3, pp. 296-300.
  16. Kim, D.W., Lee, J.M., Kim, J.S. and Seon, P.K., 2010, "Study on the Combustion Characteristics of Wood-pellet and Korean Anthracite using TGA," Korean Chem. Eng. Res., Vol. 48, pp. 58-67.
  17. Sahu, S.G., Sarkar, P., Chakraborty, N. and Adak, A.K., 2010, "Thermogravimetric Assessment of Combustion Characteristics of Blends of a Coal with Different Biomass Chars" Fuel Processing Technology, Vol. 91, No. 3, pp. 369-378. https://doi.org/10.1016/j.fuproc.2009.12.001
  18. Lee, B.H., Eddings, E.G. and Jeon, C.H., 2012, "Effect of Coal Blending Methods with Different Excess Oxygen on Unburned Carbon and NOx Emissions in an Entrained Flow Reactor," Energy and Fuels, Vol. 26, pp. 6803-6814. https://doi.org/10.1021/ef300562t