DOI QR코드

DOI QR Code

Large Scale Applications of Nanocellulosic Materials - A Comprehensive Review -

  • Received : 2015.12.01
  • Accepted : 2015.12.11
  • Published : 2015.12.30

Abstract

The common production methods of nanocellulosic (cellulosic nanofibrils, CNF) materials from wood are being reviewed, together with large scale applications and particularly papermaking applications. The high energy demand for producing CNF has been one particular problem, which has been addressed over the years and can now be considered solved. Another problem was the clogging of homogenizers/microfluidizers, and the different routes to decrease the energy demand. The clogging tendency, related to the flocculation tendency of fibres is discussed in some detail. The most common methods to decrease the energy demand are TEMPO-oxidation, carboxymethylation and mechanical/enzymatic pre-treatments in the order of increased energy demand for delamination. The rheology characteristics of CNF materials, i.e. the high shear viscosity, shear thinning and the thixotropic properties are being illuminated. CNF materials are strength adjuvants that enhance the relative bonded area in paper sheets and, hence increase the sheet density and give an increased strength of the paper, particularly for chemical pulps. At the same time papers obtain a lower light scattering, higher hygroexpansion and decreased air permeability, similar to the effects of beating pulps. The negative effects on drainage by CNF materials must be alleviated through the appropriate use of microparticulate drainage aids. The use of CNF in films and coatings is interesting because CNF films and coatings can provide paper/board with good oxygen barrier properties, particularly at low relative humidities. Some other high volume applications such as concrete, oil recovery applications, automotive body applications and plastic packaging are also briefly discussed.

Keywords

References

  1. French, A. D., Bertoniere, N. R., Brown, R. M., Chanzy, H., Gray, D., Hattori, K., and Glasser, W., Encyclopedia of Polymer Science & Technology, 3rd Ed., Vol. 5, John Wiley & Sons, New York, USA (2003).
  2. Boden, T. A., Marland, G., and Andres, R. J., Global, regional and national fossil-fuel carbon dioxide emissions, Carbon Dioxide Analysis Center, Oak Ridgec National Laboratory, US Department of Energy, Oak Ridge, TN (2010).
  3. Klemm, D., Kramer, F., Moritz, S., Lindstrom, T., Ankerfors, M., Gray, D., and Dorris, A., Nanocelluloses: A new family of nature-based materials, Angewandte Chemie International Edition 50(24):5438-5466 (2011). https://doi.org/10.1002/anie.201001273
  4. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J., Cellulose nanomaterials review: Structure, properties and nanocomposites, Chemical Society Reviews 40:3941-3994 (2011). https://doi.org/10.1039/c0cs00108b
  5. Isogai, A., Wood nanocelluloses: Fundamentals and applications as new bio-based nanomaterials, Journal of Wood Science 59(6):449- 459 (2013). https://doi.org/10.1007/s10086-013-1365-z
  6. Dufresne, A., Nanocellulose: A new ageless bionanomaterial, Materials Today 16(6):220- 227 (2013). https://doi.org/10.1016/j.mattod.2013.06.004
  7. Lindstrom, T., Aulin, C., Naderi, A., and Ankerfors, M., Microfibrillated cellulose, In Encyclopedia of Polymer Science and Technology, John Wiley & Sons (2014).
  8. Cowie, J., Bilek, E. M., Wegner, T. H., and Shatkin, J. A., Market projections of cellulose nanomaterial-enabled products - Part 2: Volume estimates, Tappi Journal 13:57-69 (2014).
  9. Turbak, A. F., Snyder, F. W., and Sandberg, K. R., Microfibrillated cellulose, a new cellulose product: Properties, uses and commercial potential, Journal of Applied Polymer Science, Applied Polymer Symposia 37:815-827 (1983).
  10. Herrick, F. W., Casebier, R. L., Hamilton, J. K., and Sandberg, K. R., Microfibrillated cellulose: Morphology and accessibility, Journal of Applied Polymer Science, Applied Polymer Symposia 37:797-813 (1983).
  11. Lindstrom, T. and Winter, L., Mikrofibrillar cellulosa som komponent vid papperstillverkning, STFI internal report C159 (1988).
  12. Eriksen, O., Syverud, K., and Gregerson, O., The use of microfibrillataed cellulose produced from kraft pulp as strength enhancer in TMP paper, Nordic Pulp and Paper Research Journal 23(2):299-304 (2008). https://doi.org/10.3183/NPPRJ-2008-23-03-p299-304
  13. Spence, K., Venditti, R., Rojas, O., Habibi, Y., and Pawlak, J., A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods, Cellulose 18(4):1097-1111 (2011). https://doi.org/10.1007/s10570-011-9533-z
  14. Kerekes, R. J. and Schell, C. J., Characterization of fiber flocculation regimes by a crowding factor, Journal of Pulp and Paper Science 18(1):J32-J38 (1992).
  15. Horvath, E. and Lindstrom, T., The influence of colloidal interactions on fibre network strength, Journal of Colloid & Interface Science 309:511-517 (2007). https://doi.org/10.1016/j.jcis.2006.08.066
  16. Ankerfors, M. and Lindstrom, T., Method for providing nanocellulose comprising modified cellulose fibers, Patent. WO2009126106A1 (2009).
  17. Naderi, A., Lindstrom, T., Sundstrom, J., Pettersson, T., Flodberg, G., and Erlandsson, J., Microfluidized carboxymethyl cellulose modified pulp: A nanofibrillated cellulose system with some attractive properties, Cellulose 22(2):1159-1173 (2015). https://doi.org/10.1007/s10570-015-0577-3
  18. Walecka, J. A., An investigation of low degree of substitution carboxymethylcellulose, Tappi Journal 39(7):458-463 (1956).
  19. Isogai, A., Saito, T., and Fukuzumi, H., TEMPO-oxidized cellulose nanofibers, Nanoscale 3(1):71-85 (2011). https://doi.org/10.1039/C0NR00583E
  20. De Nooy, A. E. J., Besemer, A. C., and Van Bekkum, H., Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans, Carbohydrate Polymers 49:397-406 (1995).
  21. Bragd, P. L., Besemer, A. C., and Van Bekkum, H., Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl $\alpha$-D-glucopyranoside, Carbohydrate Polymers 328:355-363 (2002).
  22. Bragd, P. L., Van Bekkum, H., and Besemer, A. C., TEMPO-mediated oxidation of polysaccharides, Top Catalysis 27:49-66 (2004). https://doi.org/10.1023/B:TOCA.0000013540.69309.46
  23. Saito, T., Hirota, M., Fukuzumi, H., Tamura, N., Heux, L., Kimura, S., and Isogai, A., Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions, Biomacromolecules 10(7):1992-1996 (2009). https://doi.org/10.1021/bm900414t
  24. Tanaka, R., Saito, T., and Isogai, A., Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO(2) systems in water at pH 4.8 or 6.8, International Journal of Biological Macromolecules 51(3):228-234 (2012). https://doi.org/10.1016/j.ijbiomac.2012.05.016
  25. Henriksson, M., Henriksson, G., Berglund, L. A., and Lindstrom, T., An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibres, European Polymer Journal 43(8):3434- 3441 (2007). https://doi.org/10.1016/j.eurpolymj.2007.05.038
  26. Ankerfors, M., Lindstrom, T., and Henriksson, G., Method for the manufacture of microfibrillated cellulose, US Pat. 8,546,558 (2007).
  27. Paakko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., Osterberg, M., Ruokolainen, J., Laine, J., Larsson, P. T., Ikkala, O., and Lindstrom, T., Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels, Biomacromolecules 8(6):1934-1941 (2007). https://doi.org/10.1021/bm061215p
  28. Taniguchi, T., A microfibrillated method of natural fibres, Seni Kikai Gakkaishi 52:119-123 (1996). https://doi.org/10.2115/fiber.52.P119
  29. Taniguchi, T., Microfibrillation of natural fibrous materials, Journal of the Society of Materials Science (Japan) 45(4):472-473 (1996).
  30. Abe, K., Iwamoto, S., and Yano, H., Obtaining cellulose nanofibres with a uniform width of 15 nm from wood, Biomacromolecules 8:3276-3278 (2007). https://doi.org/10.1021/bm700624p
  31. Chakraborty, A., Sain, M., and Kortschot, M., Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing, Holzforschung 59:102-107 (2005).
  32. Wang, B. and Sain, M., Dispersion of soybean stock-based nanofiber in a plastic matrix, Polymer International 56(4):538-546 (2007). https://doi.org/10.1002/pi.2167
  33. Wang, B., Sain, M., and Oksman, K., Study of structural morphology of hemp fiber from the micro to the nanoscale, Applied Composite Materials 14(2):89-103 (2007). https://doi.org/10.1007/s10443-006-9032-9
  34. Zhao, H. P., Feng, X. Q., and Gao, H., Ultrasonic technique for extracting nanofibers from nature materials, Applied Physics Letters 90(7):073112 (2007). https://doi.org/10.1063/1.2450666
  35. Suzuki, K., Okumura, H., Kitagawa, K., Sato, S., Nakagaito, A. N., and Yano, H., Development of continuous process enabling nanofibrillation of pulp and melt compounding, Cellulose 20:201-210 (2013). https://doi.org/10.1007/s10570-012-9843-9
  36. Turbak, A. F., Snyder, F. W., and Sandberg, K. R., Food products containing microfibrillated cellulose, US Pat. 4,341,807 (1982).
  37. Turbak, A. F., Snyder, F. W., and Sandberg, K. R., Suspensions containing microfibrillated cellulose, US Pat. 4,452,721 (1984).
  38. Naderi, A., Lindstrom, T., and Pettersson, T., The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: A rheological perspective, Cellulose 21(4):2357-2368 (2014). https://doi.org/10.1007/s10570-014-0329-9
  39. Tanaka, R., Saito, T., Ishii, D., and Isogai, A., Determination of nanocellulose fibril length by shear viscosity measurement, Cellulose 21(3):1581-1589 (2014). https://doi.org/10.1007/s10570-014-0196-4
  40. Adam, M. and Delsanti, M., Viscosity and longest relaxation time of semi-dilute polymer solutions. I. Good solvent, Journal de Physique 44:1185-1193 (1983). https://doi.org/10.1051/jphys:0198300440100118500
  41. Iotti, M., Gregersen, O. W., Moe, S., and Lenes, M., Rheological studies of microfibrillar cellulose water dispersions, Journal of Polymers and the Environment 19(1):137-145 (2011). https://doi.org/10.1007/s10924-010-0248-2
  42. Lasseuguette, E., Roux, D., and Nishiyama, Y., Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp, Cellulose 15(3):425-433 (2007). https://doi.org/10.1007/s10570-007-9184-2
  43. Okiyama, A., Motoki, M., and Yamanaka, S., Bacterial cellulose IV. Application to processed foods, Food Hydrocolloids 6:503-511 (1993). https://doi.org/10.1016/S0268-005X(09)80074-X
  44. Iotti, M., Coating composition of nano cellulose, its uses and method for its manufacture, Pat. WO2014/044870 A1 (2014).
  45. Koskinen, T., Gustafsson, H., and Teirfolk, J. E., A method and an apparatus for adding an additive to a cement-like composition, Pat. WO2012143617 A1 (2012).
  46. Naderi, A. and Lindstrom, T., Rheological measurements on nanofibrillated cellulose systems: A science in progress, In Cellulose and Cellulose Derivatives: Synthesis, Modification and Applications, Mondal, M. D. I. H. (ed), Nova Science Publishers, Inc., New York, pp. 187-202 (2015)
  47. Naderi, A. and Lindstrom, T., Carboxymethylated nanofibrillated cellulose: Effect of monovalent electrolytes on the rheological properties, Cellulose 21(5):3507-3514 (2014). https://doi.org/10.1007/s10570-014-0394-0
  48. Peters, S., Rushing, T., Landis, E., and Cummins, T., Nanocellulose and microcellulose fibers for concrete, Transportation Research Record 2142:25-28 (2010). https://doi.org/10.3141/2142-04
  49. Stephenson, K. M., Characterizing the behavior and properties of nano cellulose reinforced ultra high performance concrete, Ph. D. dissertation, University of Maine, Orono, ME, USA (2011).
  50. Cao, Y., Zavaterri, P., Youngblood, J., Moon, R., and Weiss, J., The influence of cellulose nanocrystal additions on the performance of cement paste, Cement and Concrete Composites 56:73-83 (2015). https://doi.org/10.1016/j.cemconcomp.2014.11.008
  51. Laukkanen, A., Teirfolk, J. E., Salmela, J., and Lille, M., Agent and composition for oilfield applications, Pat. WO2011089323 A1 (2011).
  52. Lafitte, V., Lee, J. C., James, S. G., Del Valle J. F., Yakovlev, A. V., Panga, M. K., and Szabo, G. H., Fluids and methods including nanocellulose, US Pat. 20150072902A1 (2015).
  53. de Oliviera, M. H., Maric, M., and van de Ven, T. G. M., The role of fiber entanglement in the strength of wet papers, Nordic Pulp and Paper Research Journal 23(4):426-430 (2008). https://doi.org/10.3183/NPPRJ-2008-23-04-p426-431
  54. Su, J., Mosse, W. K., Sharman, S., Batchelor, W. J., and Garnier, G., Effect of tethered and free microfilbrillated cellulose (MFC) on the properties of paper composites, Cellulose 20(4):1925-1935 (2013). https://doi.org/10.1007/s10570-013-9955-x
  55. Taipale, T., Osterberg, M., Nykanen, A., Ruokolainen, J., and Laine, J., Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength, Cellulose 17(5):1005-1020 (2010). https://doi.org/10.1007/s10570-010-9431-9
  56. Hii, C., Gregersen, O. W., Chinga-Carrasco, G., and Eriksen, O., The effect of MFC on the pressability and paper properties of TMP and GCC based sheets, Nordic Pulp and Paper Research Journal 27(2):388-396 (2012). https://doi.org/10.3183/NPPRJ-2012-27-02-p388-396
  57. Rantanen, J. and Maloney, T., Press dewatering and nip rewetting of paper containing nano-and microfibril cellulose, Nordic Pulp and Paper Research Journal 28 (4):582-587 (2013). https://doi.org/10.3183/NPPRJ-2013-28-04-p582-587
  58. Kajanto, I. and Kosonen, M., The potential use of micro-and nano-fibrillated cellulose as a reinforcing element in paper, The Journal of Science & Technology for Forest Products and Processes 2(6):42-48 (2012).
  59. Paunonen, S., Strength and barrier enhancements of composites and packaging boards by nanocelluloses - A literature review, Nordic Pulp and Paper Research Journal 28(2):165-181 (2013). https://doi.org/10.3183/NPPRJ-2013-28-02-p165-181
  60. Brodin, F. W., Gregersen, O. W., and Syverud, K., Cellulose nanofibrils: Challenges and possibilities as a paper additive or coating material - A review, Nordic Pulp and Paper Research Journal 29 (1):156-166 (2014). https://doi.org/10.3183/NPPRJ-2014-29-01-p156-166
  61. Ahola, S., Osterberg, M., and Laine, J., Cellulose nanofibrils-adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive, Cellulose 15(2):303-314 (2008). https://doi.org/10.1007/s10570-007-9167-3
  62. Da Silva Perez, D., Tapin-Lingua, S., Lavalette, A., Barbosa, T., Gonzalez, I., Siqueira, G., Bras, J., and Dufresne, A., Impact of micro/nanofibrillated cellulose preparation on the reinforcement properties of paper and composite films, International Conference on Nanotechnology for the Forest Products Industry, Espoo, Finland, pp.711-730 (2010)
  63. Osong, H. S., Norgren, S., and Engstrand, P., Paper strength improvement by inclusion of nano-ligno-cellulose to chemi-thermomechanical pulp, Nordic Pulp and Paper Research Journal 29(2):309-316 (2014). https://doi.org/10.3183/NPPRJ-2014-29-02-p309-316
  64. Manninen, M., Kajanto, I., Happonen, J., and Paltakari, J., The effect of microfibrillated cellulose addition on drying shrinkage and dimensional stability of wood-free paper, Nordic Pulp and Paper Reserach Journal 26(3):297-305 (2011). https://doi.org/10.3183/NPPRJ-2011-26-03-p297-305
  65. González, I., Boufi, S., Pelach, M. A., Alcala, M., Vilaseca, F., and Mutje, P., Nanofibrillated cellulose as paper additive in eucalyptus pulps, BioResources 7(4):5167-5180 (2012).
  66. Gonzalez, I., Vilaseca, F., Alcala, M., Pelach, M. A., Boufi, S., and Mutje, P., Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper, Cellulose 20(3):1425-1435 (2013). https://doi.org/10.1007/s10570-013-9927-1
  67. Charani, P. R., Dehgani-Firouzabadi, M., Afra, E., Blademo, A., Naderi, A., and Lindstrom, T., Production of microfibrillated cellulose from unbleached kraft pulp of kenaf and Scotch pine and its effect on the properties of hardwood kraft: Microfibrillated cellulose paper, Cellulose 20(5):2559-2567 (2013). https://doi.org/10.1007/s10570-013-9998-z
  68. Petroudy, S. R. D., Syverud, K., Chinga-Carrasco, G., Ghasemain, A., and Resalati, H., Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper, Carbohydrate Polymers 99:311-318 (2014). https://doi.org/10.1016/j.carbpol.2013.07.073
  69. Hellstrom, P., Heijnesson-Hulten, A., Paulsson, M., Hakansson, H., and Germgard, U., The effect of Fenton chemistry on the properties of microfibrillated cellulose, Cellulose 21:1489-1503 (2014). https://doi.org/10.1007/s10570-014-0243-1
  70. Guimond, R., Chabot, B., Law, K. N., and Daneault, C., The use of cellulose nanofibres in papermaking, Journal of Pulp and Paper Science 36(1-2):55-61 (2010).
  71. Syverud, K. and Stenius, P., Strength and barrier properties of MFC films, Cellulose 16(1):75-85 (2009). https://doi.org/10.1007/s10570-008-9244-2
  72. Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., and Isogai, A., Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation, Biomacromolecules 10(1):162-165 (2009). https://doi.org/10.1021/bm801065u
  73. Aulin, C., Gallstedt, M., and Lindstrom, T., Oxygen and oil barrier properties of microfibrillated cellulose films and coatings, Cellulose 17(3):559-574 (2010). https://doi.org/10.1007/s10570-009-9393-y
  74. Aulin, C. and Lindstrom, T., Biopolymer coatings for paper and paperboard, In Biopolymers- New Materials for Sustainable Films and Coatings, Plackett, D. (ed), John Wiley & Sons, Chichester, Sussex, UK, pp. 255-276 (2011).
  75. Lavoine, N., Desloges, I., Dufresne, A., and Bras, J., Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review, Carbohydrate Polymers 90(2):735-764 (2012). https://doi.org/10.1016/j.carbpol.2012.05.026
  76. Ashley, R. J., Permeability of plastics packaging, In Polymer Permeability, Comyn, J. (ed), Chapman & Hall, Ipswhich, UK, pp. 269-308 (1985).
  77. Han, J. H. and Gennadios, A., Edible films and coatings: A review, In Innovations in Food Packaging, Han, J. H. (ed), Elsevier Academic Press, New York, NY, USA, pp. 239-262 (2005).
  78. Krochta, J. M., Food packaging, In Handbook of Food Engineering, 2nd Ed., Heldman, D. R. and Lund, D. B. (ed), CRC Press LLC, Boca Raton, FL, USA, pp. 847-927 (2007).
  79. Kinnunen, K., Hjelt, T., Kentta, E., and Forsstrom, U., Thin coatings for paper by foam coatings, In PaperCon 2013, Tappi Press, Atalanta, GE, USA, pp. 213-225 (2013).
  80. Song, H., Anderfors, M., Hoc, M., and Lindstrom, T., Reduction of the linting and dusting propensity of newspaper using starch and microfibrillated cellulose, Nordic Pulp and Paper Research Journal 25(4):495-504 (2010).
  81. Aulin, C., Netrval, J., Wagberg, L., and Lindstrom, T., Aerogels from nanofibrillated cellulose with tunable oleophobicity, Soft Matter 6:3298-3305 (2010). https://doi.org/10.1039/c001939a
  82. Siró, I., Plackett, D., Hedenqvist, M., Ankerfors, M., and Lindstrom, T., Highly transparent films from carboxymethylated microfibrillated cellulose: The effect of multiple homogenization steps on key properties, Journal of Applied Polymer Science 119(5):2652- 2660 (2011). https://doi.org/10.1002/app.32831
  83. Naderi, A., Lindstrom, T., and Sundstrom, J., Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose?, Cellulose 22(2):1147-1157 (2015). https://doi.org/10.1007/s10570-015-0576-4
  84. Cervin, N. T., Andersson, L., Ng, J. B. S., Olin, P., Bergstrom, L., and Wagberg, L., Lightweight and strong cellulose materials made from aqueous foams stabilized by nanofibrillated cellulose, Biomacromolecules 14(2):503-511 (2013). https://doi.org/10.1021/bm301755u
  85. Eichhorn, S. J., Dufresne, A., Aranguren, M., Marcovich, N. E., Capadona, J. R., Rowan, S. J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A. N., Mangalam, A., Simonsen, J., Benight, A. S., Bismarck, A., Berglund, L. A., and Peijs, T., Review: Current international research into cellulose nanofibres and nanocomposites, Journal of Materials Science 45(1):1-33 (2009). https://doi.org/10.1007/s11003-009-9160-0
  86. Khalil, H. A., Bhat, A. H., and Yusra, A. I., Green composites from sustainable cellulose nanofibrils: A review, Carbohydrate Polymers 87(2):963-979 (2012). https://doi.org/10.1016/j.carbpol.2011.08.078

Cited by

  1. Low-cost, environmentally friendly route to produce glass fiber-reinforced polymer composites with microfibrillated cellulose interphase vol.133, pp.46, 2016, https://doi.org/10.1002/app.44183
  2. Substrate role in coating of microfibrillated cellulose suspensions vol.24, pp.3, 2017, https://doi.org/10.1007/s10570-017-1201-5
  3. Continuous roll-to-roll coating of cellulose nanocrystals onto paperboard vol.25, pp.10, 2018, https://doi.org/10.1007/s10570-018-1958-1
  4. Slot die coating of nanocellulose on paperboard vol.17, pp.1, 2015, https://doi.org/10.32964/tj17.01.11
  5. From biorefineries to bioproducts: conversion of pretreated pulp from biorefining streams to lignocellulose nanofibers vol.18, pp.4, 2015, https://doi.org/10.32964/tj18.4.233
  6. Recent Advances in Cellulose Nanofibers Preparation through Energy-Efficient Approaches: A Review vol.14, pp.20, 2015, https://doi.org/10.3390/en14206792