• Title/Summary/Keyword: Different carbon sources

Search Result 316, Processing Time 0.026 seconds

Production and Characteristics of Bacterial Cellulose, an Eco-Friendly Biomaterial, using Different Carbon Sources (탄소원 종류에 따른 환경친화성 생물소재인 세균 섬유소의 생산 및 특성)

  • Park, SungJin;Choi, Seunghoon;Park, MinJoo;Lee, O-Mi;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.29 no.8
    • /
    • pp.819-826
    • /
    • 2020
  • Production of Bacterial Cellulose (BC) by Gluconacetobacter sp. A5 was studied in shaken culture using different cost-effective carbon sources and its structural and mechanical properties were evaluated. Glycerol showed the highest level (7.26 g/l) of BC production, which was about three times higher than the yield in glucose medium. BC production depended not only on the decrease in pH, but also on the ability of Gluconacetobacter sp. A5 to synthesize glucose from different carbon sources and then polymerize it into BC. All BC produced from different carbon sources exhibited a three-dimensional reticulated structure consisting of ultrafine cellulose fibriles. Carbon sources did not significantly change the microfibrile structure of the resulting BC. BC produced from glucose medium had the lowest water-holding capacity, while BC from molasses medium had the highest. XRD data revealed that all BC were cellulose type I, the same as typical native cellulose. The crystalline strength of BC produced in glucose medium was the highest, and that in molasses medium was the lowest. Our results suggest that glycerol could be a potential low-cost substrate for BC production, leading to the reduction in the production cost, and also to produce BC with different mechanical properties by selecting appropriate carbon source.

Synthesis of Alcohol-Oxidase in Candida boidinii (Candida boidinii에 의한 Alcohol-Oxidase의 생성)

  • 이명숙;김미은;고병호;김상현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.6
    • /
    • pp.792-796
    • /
    • 1993
  • The synthesis alcohol-oxidase[EC 1.1.3.13] was investigated in the yeasts, Candida boidinii CBS 8106 and C. boidinii CBS 2428, during growth on different carbon sources. Alcohol-oxidase was undetectable in all strains submitted to the test in the mineral salts medium containing 1.0% glucose, but its production was rapidly increased when the carbon source was changed glucose to 1.0% methanol after 24hrs of incubation. When cells were grown on the various carbon sources (glucose, xylose, lactose, glycerol, galactose, saccharose, sorbose, lactic acid or acetic acid), the alcohol-oxidase activity was undetected. These carbon sources together with methanol yielded far better synthesis of alcohol-oxidase than in the case of carbon sources alone. Alcohol-oxidase was active towards alcohol of shorter alkyl-chain length than C5 and unsaturated alcohols. Its affinity for these alcohols decreased with the increasing length of the alkyl-chain. The apparent Km values for the methanol of Candida boidinii CBS 8106 and C. boidinii CBS 2428 were 1.96 and 1.21, respestively.

  • PDF

Cultural Characteristics of Ophiocordyceps heteropoda Collected from Korea

  • Sung, Gi-Ho;Shrestha, Bhushan;Han, Sang-Kuk;Sung, Jae-Mo
    • Mycobiology
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Isolates of Ophiocordyceps heteropoda (Kobayasi) collected from Mt. Halla on Jeju-do, Korea were tested for mycelial growth on different agar media and in the presence of different carbon and nitrogen sources. Similarly, isolates were also incubated at different temperatures as well as under continuous light and dark conditions. Growth was better on Hamada agar, basal medium, and malt-yeast agar, but poor on Czapek-Dox agar. Different carbon sources such as dextrin, saccharose, starch, lactose, maltose, fructose, and dextrose resulted in better growth. Complex organic nitrogen sources such as yeast extract and peptone revealed the most effective growth. Mycelial growth was best at $25^{\circ}C$. The growth rate was faster in the dark than the light, but mycelial density was less compact in the dark.

Growth and Physiological Responses of Four Plant Species to Different Sources of Particulate Matter

  • Kwon, Kei-Jung;Odsuren, Uuriintuya;Bui, Huong-Thi;Kim, Sang-Yong;Park, Bong-Ju
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.5
    • /
    • pp.461-468
    • /
    • 2021
  • Background and objective: Particulate matter (PM) has a serious impact on health. Recently, studies are conducted to reduce PM in an environmentally friendly way using plants. This study investigated the physiological responses of plants and their ability to remove PM by continuously spraying different PM sources (loam, fly ash, carbon black) to four native plant species, such as Iris sanguinea, Pteris multifida, Vitis coignetiae, and Viburnum odoratissimum var. awabuki. Methods: The four plant species were randomly placed in four chambers, and 0.1 g of different PM was injected into each chamber twice a week. We measured chlorophyll, carotenoid, chlorophyll fluorescence (Fv/Fm), total leaf area, amount of leaf wax, PM10 (sPM10) and PM2.5 (sPM2.5) on the leaf surface, and PM10 (wPM10) and PM2.5 (wPM2.5) on the wax layer. Results: For I. sanguinea and V. coignetiae, the sources of PM did not affect the growth response. P. multifida showed high chlorophyll a, b, total chlorophyll, and carotenoid content in carbon black as well as high Fv/Fm and total leaf area, thereby proving that carbon black helped plant growth. By PM sources, sPM10 showed a significant difference in three plant species, sPM2.5 in two plant species, and wPM10 in one plant species, indicating that sPM10 was most affected by PM sources. Conclusion: Carbon black increased the leaf area by affecting the growth of P. multifida. This plant can be effectively used for PM reduction by increasing the adsorption area. I. sanguinea and V. coignetiae can be used as economical landscaping plants since they can grow regardless of PM sources.

Characteristics of Metacordyceps yongmunensis, a New Species from Korea

  • Sung, Gi-Ho;Shrestha, Bhushan;Sung, Jae-Mo
    • Mycobiology
    • /
    • v.38 no.3
    • /
    • pp.171-175
    • /
    • 2010
  • Metacordyceps yongmunensis is a newly reported species from Korea, which is very similar to Cordyceps species in morphological characters. It grows on large lepidopteran pupa, and numerous white stromata grow on a single host. Mycelial growth characteristics of M. yongmunensis isolates were studied in different media and at different temperatures. Also, different carbon sources, nitrogen sources, and mineral salts were tested for mycelial growth of M. yongmunensis. Schizophyllum (mushroom) genetics complete medium plus yeast extract, Schizophyllum (mushroom) genetics minimal medium, and Martin's peptone dextrose agar produced longer colony diameters and more compact mycelial density than other media. The optimum temperature for mycelial growth was $25^{\circ}C$. Carbon sources such as sucrose, soluble starch, dextrose, glucose, dextrin, maltose, and fructose showed better mycelial growth, whereas peptone, yeast extract and tryptone resulted in the best mycelial growth of all of the nitrogen sources tested. All of the mineral salts tested showed similar growth as the control, except $K_2HPO_4$ which showed longer colony diameter and more compact mycelial density. The compact colonies were white and cottony with a greenish margin. The results showed that M. yongmunensis is an easy fungus to growas it grew from 30 to more than 50 mm in 2 wk.

The Effect of Carbon Sources on Nisin Z Biosynthesis in Lactococcus lactis subsp. lactis A164

  • CHEIGH CHAN-ICK;LEE SANG-JAE;PYUN YU-RYANG;AN DUEK-JUN;HWANG YOUNG-SUP;CHUNG YOOJIN;PARK HOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1152-1157
    • /
    • 2005
  • The effect of carbon sources on nisin Z biosynthesis in Lactococcus lactis subsp. lactis A164 was studied in batch culture using M17 broth containing different carbon sources. Among the eleven carbon sources tested, glucose, sucrose, and lactose were suitable carbon sources for cell growth of L. lactis A164. In particular, cells grown on lactose produced at least 3-fold greater amount of nisin Z than those on other carbon sources. Galactose resulted in less amount of cell mass than did sucrose or glucose, but gave a higher level of nisin Z activity. Northern blot analysis revealed. that lactose increased the transcription of the nisZ pre-peptide gene. Although galactose was less efficient than lactose, it increased the transcription of nisZ along with a higher level of nisin Z than did sucrose and glucose. These results suggest that the increased nisin Z production is correlated with the induction of nisZ by lactose and galactose. Among all the carbon sources tested, no remarkable differences were observed in nisRK and nisFEG transcripts, indicating that the lactose- or galactose-mediated induction is unique to the nisZ promoter.

Kinetic Modeling of Submerged Culture of A. blazei with Mixed Carbon Sources of Glucose and Dextrin

  • Na Jeong-Geol;Kim Hyun-Han;Chang Yong-Keun;Lee Sang-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1331-1337
    • /
    • 2006
  • A mathematical model has been proposed for the batch culture of Agaricus blazei with mixed carbon sources of glucose and dextrin. In the proposed model, the metabolism of A. blazei was divided into three parts: cell growth, exopolysaccharides (EPS) production, and another EPS production pathway activated by dextrin hydrolysis. Each pathway was described mathematically and incorporated into the mechanistic model structure. Batch cultures were carried out with six different carbon source compositions. Although parameters were estimated by using the experimental data from the two extreme cases such as glucose only and dextrin only, the model represented well the profiles of glucose, cell mass, and EPS concentrations for all the six different carbon source mixtures, showing a good interpolation capability. Of note, the lag in EPS production could be quite precisely predicted by assuming that the glucose-to-cell mass ratio was the governing factor for EPS production.

Effect of Different Carbon and Nitrogen Compounds on the Growth and Sporulation of Curvularia clavata (야자나무 고조병균(枯調病菌)의 생장(生長)과 포자형성(胞子形成)에 대한 탄소 및 질소의 효과)

  • Odigie, E.E.
    • The Korean Journal of Mycology
    • /
    • v.18 no.2
    • /
    • pp.109-114
    • /
    • 1990
  • The effect of different carbon and nitrogen compounds on the growth and sporula­tion of Curvularia clavata Alcorn (Herberium No. IMI264075) has been studied. All the carbon sources tried were well utilized by the pathogen though glucose, and sucrose supported the best growth while glucose, maltose and sucrose the sporulation of the fungus. Of the nine nitrogen compounds, L-glutamic acid supported the best growth while aspartic acid and L-glutamic acid the sporulation of the fungus. Growth and sporulation were generally better with organic than inorganic nitrogen sources. Ammonium sulphate was the best inorganic source. A sudden drop of pH value of the culture media after 4 days of incubation did not favour good growth of the fungus.

  • PDF

Exploring the Effects of Carbon Sources on the Metabolic Capacity for Shikimic Acid Production in Escherichia coli Using In Silico Metabolic Predictions

  • Ahn, Jung-Oh;Lee, Hong-Weon;Saha, Rajib;Park, Myong-Soo;Jung, Joon-Ki;Lee, Dong-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1773-1784
    • /
    • 2008
  • Effects of various industrially important carbon sources (glucose, sucrose, xylose, gluconate, and glycerol) on shikimic acid (SA) biosynthesis in Escherichia coli were investigated to gain new insight into the metabolic capability for overproducing SA. At the outset, constraints-based flux analysis using the genome-scale in silico model of E. coli was conducted to quantify the theoretical maximum SA yield. The corresponding flux distributions fueled by different carbon sources under investigation were compared with respect to theoretical yield and energy utilization, thereby identifying the indispensable pathways for achieving optimal SA production on each carbon source. Subsequently, a shikimate-kinase-deficient E. coli mutant was developed by blocking the aromatic amino acid pathway, and the production of SA on various carbon sources was experimentally examined during 51 batch culture. As a result, the highest production rate, 1.92 mmol SA/h, was obtained when glucose was utilized as a carbon source, whereas the efficient SA production from glycerol was obtained with the highest yield, 0.21 mol SA formed per mol carbon atom of carbon source consumed. The current strain can be further improved to satisfy the theoretically achievable SA production that was predicted by in silico analysis.

A Useful Material Production from Whey : Effect of Carbon Sources on Zooglan Production by Zoogloea ramigera (유청으로부터 유용물질 생산 : Zoogloea remigera에 의한 Zooglan 생산에서 탄소원의 영향)

  • 김동운;이재찬
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.221-229
    • /
    • 1995
  • Effects of carbon sources on zooglan production by Zoogloea ramigera were investigated. The production of zooglan was varied according to the carbon sources used. The largest amount of zooglan was obtained when lactose was used as carbon source and fermentation broth with lactose showed the higher viscosity. The effects of carbon sources were in decreasing order of lactose, glucose, galactose and sucrose. The viscosities of purified zooglan solutions (5g/L) obtained from different carbon sources were measured. When lactose was used, the viscosities of zooglan solutions was quite high and other carbon sources such as glucose and galactose gave little lower viscosities than lactose but sucrose gave very low values. On the other hand, it could be postulated that most of lactose is hydrolyzed by intracellular ${\beta}$-galactosidase.

  • PDF