DOI QR코드

DOI QR Code

한국남부 자생 닭의난초 (난초과)의 시 공간에 따른 결실률 변이

Spatial and temporal variation on fruit set in Epipactis thunbergii (Orchidaceae) from southern Korea

  • 정미윤 (국립낙동강생물자원관 담수다양성연구실 내 다양성보전팀) ;
  • 정명기 (경상대학교 생물학과 및 기초과학연구소)
  • Chung, Mi Yoon (Biodiversity Conservation Research Team, Freshwater Biodiversity Research Division, Nakdonggang National Institute of Biological Resources) ;
  • Chung, Myong Gi (Department of Biology and the Research Institute of Natural Science, Gyeongsang National University)
  • 투고 : 2015.11.25
  • 심사 : 2015.12.09
  • 발행 : 2015.12.31

초록

난초 열매의 결실의 시 공간적 변화가 장기적으로 개체군의 생존에 영향을 끼칠 수 있으며 수 세대에 걸쳐 유전적 다양성에 영향을 미칠 것이다. 본 연구의 목적은 화밀을 분비하는 육상 난초인 닭의난초를 대상으로 자연 조건에서 시 공간의 결실 수준을 조사하고 교배계를 파악하는 데 있다. 본 연구자들은 전라남도 해남군 징의리 해안 1.5 km 걸쳐 위치한 4곳 집단에서 2년간의 조사 기간 동안 수분실험을 행하였다. 2년 동안 결실률이 집단 내 작은 슈트의 모임인 패치 내에서 유사했다. 대조적으로, 패치 간에는 결실룰이 유의 한 수준에서 차이를 보였다. 또한 큰 화서를 지닌 식물이 작은 화서를 지니는 식물보다 훨씬 더 많은 열매 생성을 보였다. 닭의난초의 결실률은 2 년의 조사 기간 동안 비슷하였으나(14.1%) 연구된 보상을 주는(rewarding) 난초84종의 평균 결실률(37.1%) 보다 낮았다. 인위적인 자가 수분(90.5-95.2%), 인위적인 인화(隣花)수분(geitonogamy: 94.7-95.0%), 그리고 인위적인 타가 수분(91.3-91.4%)등에 의해서는 결실률이 상당한 수준으로 증가되었다. 꽃피기 전 수술을 제거 한 경우에 열매가 전혀 맺히지 않았으며 꽃 스스로 자동으로 수분이 일어나지 않았다. 본 연구 결과에 의하면 닭의난초는 자가화합성이고, 열매를 생성하기 위해서는 수분매개체인 곤충류가 필요하며, 2년간 조사 기간 중 징의리 집단들의 환경이 비슷하였음을 암시하고 있다. 본 연구 결과는 결실률이 시간보다 공간적으로 더욱 뚜렷하다는 점을 강조하고 있다.

Spatio-temporal variation in fruit set in orchids would affect long-term population viability and will influence genetic diversity over many generations. The aim of this study was to examine the breeding system of the nectariferous terrestrial orchid Epipactis thunbergii, to specifically determine levels of fruit set in terms of time and space under natural conditions. We examined pollination under natural conditions and conducted hand pollination experiments during a 2-year survey in four populations located along 1.5 km of coastal line in Jinguiri (rual village) [Jeollanam-do (province), southern Korea]. We found that, over a 2-year period, levels of percentage of fruit set were similar within patches of the four populations. By contrast, we detected significant differences in the percentage of fruit set among patches. We also found that plants with larger inflorescence size produced significantly more fruits than plants with fewer flowers. Over a 2-year period, the percentage of fruit set for E. thunbergii was similar but low (14.1%) compared to that averaged for eighty-four rewarding species (37.1%). However, an increase in fruit set was achieved by hand-pollinations: artificial self-pollination (90.5-95.2%), artificial geitonogamy (94.7-95.0%), and cross-pollination (artificial xenogamy, 91.3-91.4%). No emasculated flowers produced fruits and no automatic pollination was found in E. thunbergii. Our findings suggest that E. thunbergii is a self-compatible terrestrial orchid that depends on pollinators (insects) to achieve fruit set in natural habitats, and that local environmental conditions were similar over a period of 2 years in the study area. Our results also highlight the cryptic variation of fruit production in time, but more pronounced variability in space.

키워드

참고문헌

  1. Ackerman, J. D. and S. Moya. 1996. Hurricane aftermath: resiliency of an orchid-pollinator interaction in Puerto Rico. Caribbean Journal of Science 32: 369-374.
  2. Ackerman, J. D., E. J. Melendez-Ackerman and J. Salguero-Faria. 1997. Variation in pollinator abundance and selection on fragrance phenotypes in an epiphytic orchid. American Journal of Botany 84: 1383-1390. https://doi.org/10.2307/2446136
  3. Alexanderson, R. and J. Agren. 1966. Population size, pollinator visitation rate and fruit production in the deceptive orchid Calypso bulbosa. Oecologia 107: 533-540.
  4. Ashman, T.-L. 1998. Is relative pollen production or removal a good predictor of relative male fitness? An experimental exploration with a wild strawberry (Fragaria virginiana, Rosaceae). American Journal of Botany 85: 1166-1171. https://doi.org/10.2307/2446349
  5. Ashman, T.-L. and D. Shoen. 1997. The cost of floral longevity in Clarkia tembloriensis: an experimental investigation. Evolutionary Ecology 11: 289-300. https://doi.org/10.1023/A:1018416403530
  6. Bino, R. J., A. Dafni and A. D. J. Meeuse. 1982. The pollination ecology of Orchis galilaea (Bornm. et Schulze) Schltr. (Orchidaceae). New Phytologist 90: 315-319. https://doi.org/10.1111/j.1469-8137.1982.tb03263.x
  7. Burd, M. 1994. Bateman's Principle and plant reproduction: The role of pollen limitation in fruit and seed set. The Botanical Review 60: 63-139.
  8. Chung, M. Y. and M. G. Chung. 2003. The breeding systems of Cremastra appendiculata and Cymbidium goeringii: high levels of annual fruit failure in two self-compatible orchids. Annales Botanici Fennici 40: 81-85.
  9. Chung, M. Y. and M. G. Chung. 2005. Pollination biology and breeding systems in the terrestrial orchid Bletilla striata. Plant Systematics and Evolution 252 : 1-9. https://doi.org/10.1007/s00606-004-0256-6
  10. Dafni, A. 1992. Pollination ecology: a practical approach. Oxford Univ. Press, New York. Pp. 250.
  11. Dafni, A. and Bernhardt, P. 1990. Pollination of terrestrial orchids of southern Australia and the Mediterranean region. Evolutionary Biology 24: 193-252.
  12. Dressler, R. L. 1981. The orchids: natural history and classification. Harvard University Press, Cambridge. Pp. 332.
  13. Ehlers, B. K., J. M. Olesen and J. Agren. 2002. Floral morphology and reproductive success in the orchid Epipactis helleborine: regional and local across-habitat variation. Plant Systematics and Evolution 236: 19-32. https://doi.org/10.1007/s00606-002-0197-x
  14. Gill, D. E. 1989. Fruiting failure, pollinator inefficiency, and speciation in orchids. In Speciation and its consequences. Otte, D. and J. A. Endler (eds.), Sinauer,Sunderland. Pp. 458-481.
  15. Ivri, Y. and A. Dafni. 1977. The pollination ecology of Epipactis consimilis Don (Orchidaceae) in Israel. New Phytologist 79: 173-177. https://doi.org/10.1111/j.1469-8137.1977.tb02193.x
  16. Jacquemyn, H., R. Brys and O. Honnay. 2009. Large population sizes mitigate negative effects of variable weather conditions on fruit set in two spring woodland orchids. Biology Letters 5: 495-498. https://doi.org/10.1098/rsbl.2009.0262
  17. Jacquemyn, H. and R. Brys. 2010. Temporal and spatial variation in flower and fruit production in a food-deceptive orchid: a five-year study. Plant Biology 12: 145-153. https://doi.org/10.1111/j.1438-8677.2009.00217.x
  18. Judd, W. W. 1972. Wasps pollinating Epipactis helleborine (L.) Cranz at Owen, Ontario. Bulletin of Entomological Society of Ontario 102: 115.
  19. Kitamura, S., G. Murata and T. Koyama. 1986. Colored illustrations of herbaceous plants of Japan. Hoikusha Publishing Co., Osaka. Pp. 465. (in Japanese)
  20. Maad, J. and L. A. Nilsson. 2004. On the mechanism of floral shifts in speciation: gained pollination efficiency from tongueto eye-attachment of pollinia in Platanthera (Orchidaceae). Biological Journal of the Linnean Society 83: 481-495. https://doi.org/10.1111/j.1095-8312.2004.00406.x
  21. Matsui, K., A. Ushimaru and N. Fujita N. 2001. Pollinator limitation in a deceptive orchid, Pogonia japonica, on a floating peat mat. Plant Species Biology 16: 231-235. https://doi.org/10.1046/j.1442-1984.2001.00067.x
  22. Murren, C. J. 2002. Effects of habitat fragmentation on pollination: pollinators, pollinia viability and reproductive success. Journal of Ecology 90: 100-107. https://doi.org/10.1046/j.0022-0477.2001.00638.x
  23. Murren, C. J. and A. M. Ellison. 1996. Effect of habitat, plant size, and floral display size on male and female reproductive success of the Neotropical orchid Brassavola nodosa. Biotropica 28: 30-41. https://doi.org/10.2307/2388769
  24. Neiland, M. R.M. and C. C. Wilcock. 1995. Maximization of reproductive success by European Orchidaceae under conditions of infrequent pollination. Protoplasma 187: 39-48. https://doi.org/10.1007/BF01280231
  25. Neiland, M. R.M. and C. C. Wilcock. 1998. Fruit set, nectar reward, and rarity in the Orchidaceae. American Journal of Botany 85: 1657-1671. https://doi.org/10.2307/2446499
  26. Nilsson, L. A. 1978. Pollination ecology of Epipactis palustris (Orchidaceae). Botaniska Notiser 131: 355-368.
  27. Nilsson, L. A. 1983. Anthecology of Orchis mascula (Orchidaceae). Nordic Journal of Botany 3: 157-179. https://doi.org/10.1111/j.1756-1051.1983.tb01059.x
  28. Nilsson, L. A. 1984. Anthecology of Orchis morio (Orchidaceae) at its outpost in the North. Nova Acta Regiae Societatis Scientiarum Upsaliensis 3: 167-179.
  29. Primack, R. B. and P. Hall. 1990. Cost of reproduction in the pink lady's slipper orchid: a four year experimental study. American Naturalist 136: 638-656. https://doi.org/10.1086/285120
  30. Proctor, M. and P. Yeo. 1973. The pollination of flowers. Collins, London. Pp. 418.
  31. Proctor, H. C. and L. D. Harder. 1994. Pollen load, capsule weight, and seed production in three orchid species. Canadian Journal of Botany 72: 249-255. https://doi.org/10.1139/b94-033
  32. Proctor, H. C. and L. D. Harder. 1995. Effect of pollination on floral longevity in the orchid Calypso bulbosa (Orchidaceae). American Journal of Botany 82: 1131-1136. https://doi.org/10.2307/2446066
  33. Schemske, D. W. 1980. Evolution of floral display in the orchid Brassavola nodosa. Evolution 34: 1131-1136.
  34. Sidak, Z. 1967. Confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association 62: 626-633.
  35. Stpiczynska, M. 2003. Floral longevity and nectar secretion of Plantanthera chlorantha (Custer) Rchb. (Orchidaceae). Annals of Botany 92: 191-197. https://doi.org/10.1093/aob/mcg124
  36. Sugiura, N. 1996. Pollination of the orchid Epipactis thunbergii by syrphid flies (Diptera: Syrphidae). Ecological Research 11: 249-255. https://doi.org/10.1007/BF02347782
  37. Tatarenko, I. V. And K. Kondo. 2003. Seasonal development of annual shoots in some terrestrial orchids from Russia and Japan. Plant Species Biology 18: 43-55. https://doi.org/10.1046/j.1442-1984.2003.00087.x
  38. Tremblay, R. L. 1992. Trends in pollination biology of the Orchidaceae. Evolution and Systematics. Canadian Journal of Botany 70: 642-650. https://doi.org/10.1139/b92-083
  39. Tremblay, R. L., J. D. Ackerman, J. K. Zimmerman and R. N. Calvo. 2005. Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biological Journal of Linnean Society 84: 1-54.
  40. Waite, S., N. Hopkins and S. Hitchings. 1991. Levels of pollinia export, import and fruit set among plants of Anacamptis pyramidalis, Dactylorhiza fuchsia, and Epipactis helleborine. In Population ecology of terrestrial orchids. Wells, T. C. E. and J. H. Willems (eds.), SPB Academic Publishing, The Hague. Pp. 103-110.

피인용 문헌

  1. Notes on fine-scale spatial distribution of three Cephalanthera species (Orchidaceae) that grow in sympatry in Korea: Implications for maintenance of species boundaries vol.47, pp.4, 2017, https://doi.org/10.11110/kjpt.2017.47.4.289