1. Introduction
Brushless DC (BLDC) motors are considered superior to brushed DC motors as they are exceedingly efficient and require less maintenance due to absence of brushes. They are also more versatile, mainly because of their ability in the speed and torque domain. Since BLDC motors are available in compact packages, they are used in number of automotive and electronic applications [1-4]. Besides BLDC motors need a complex and expensive electronic controller to keep the motor running, they also experience a serious problem termed as cogging torque which is detrimental to its suitability in industrial and drive applications [6, 7]. Various design modifications and optimization procedures have been reported in the literature to lessen the effect of cogging torque and improve the performance of BLDC motors [7-9]. Variety of methods to assuage the cogging torque during the machine design phase itself has been reported [1]. These methods include skewing of the stator laminations or rotor magnets, varying slot width, varying magnet width, shifting alternate pair of poles and notching of teeth [13-16].
These design variations and optimization procedures attract a great attention as they could solve different machine design problems that are defiant to conventional programing techniques [17, 18]. Multi-objective optimization techniques to improve the performance of BLDC motors are also discussed in the recent past [10]. Related literatures reveal that modern swarm based optimization techniques like predator- prey algorithm [11] and bat inspired optimisation approach [12] are proposed for design optimization of brushless DC wheel motor considering mass and efficiency as performance indices. Among all the vital performance indices of BLDC motors, cogging torque and its effect on average torque dictate the application domain. Therefore, an optimal design procedure for mitigating the cogging torque and thus maximizing the average torque needs to be explored.
Having reviewed the magnitude of work done in the design and optimization province of BLDC motors, it is understood that finite element analysis (FEA) is used to predict the performance of BLDC motor since the geometry and the materials used are highly non-linear. However, in order to carry out optimization with ample accuracy, abundant field solutions are required. Hence FEA method is combined with either interpolation methods or heuristic approaches to determine the optimal design. While heuristic methods are time consuming, the function approximation obtained from interpolation methods like non-linear least square method result in significant error and hence the optimization may not be accurate paving way to artificial neural network (ANN) based optimization procedures [20]. Since the data from FEA is meager, even ANN based procedures may not result in an accurate solution [19]. Therefore this paper explores the application of generalized regression neural network (GRNN) for data interpolation and design optimization of BLDC motor. Though other types of neural networks like multi layer perceptron (MLP) networks can be considered for this application, GRNN seems to be a better option due to the fact that i) it has only one design parameter (spread factor); ii) it is easy to train since it is a one- pass algorithm and iii) it can easily approximate functions from sparse and noisy data [21].
This paper comprises of five sections wherein an overview of BLDC motors and the necessity for an optimal design is illustrated in section 1. While section 2 briefs problem formulation, section 3 vividly elucidates the performance analysis of BLDC motor using FEA. Section 4 enlightens how a GRNN is used for interpolation and design optimisation. The concluding remarks are provided in section 5.
2. Design Optimization of BLDC-Problem Formulation
The structure of BLDC is presented in Fig. 1 [2]. Literature review reveals that the cogging torque in BLDC motors is very much affected by the machine design variables and manufacturing related issues [1]. This work of optimal design is applied to a 120W BLDC motor by considering the magnet length, stator slot opening and air gap length as design variables with a view to minimize cogging torque and maximize average torque. The design variables are chosen after a detailed investigation of the variables affecting cogging torque [5]. The lower and upper bound of the design variables [5, 11, 12] are given in Table 1.Since the proposed work is for a 120W motor cited in the Appendix 1, the bounds of design variables are chosen to meet the average torque requirement of 0.34 N-m. The other dimensions [2] of the motor are also given in Appendix 1.
Fig 1.Structure of BLDC motor
Table 1.Bounds of design variables
The objectives of the optimization procedure are defined as follows.
Maximization of average torque
Minimization of cogging torque
3. Performance Analysis Using Finite Element Analysis
The optimization procedure makes use of FEA to predict the performance of the BLDC motor. A standard motor with dimensions listed in Appendix 1 is modeled using MagNet 7.1. 1 and the static 2D analysis is performed to predict the performance indices of the machine. While the flux lines of the model is shown in Fig. 2, the flux linkage variation for one rotation of rotor through 360 degrees is shown in Fig. 3. The variation in cogging torque as a function of rotor position is depicted in Fig. 4. The results of FEA are validated with an experimental model and an analytical method.
Fig. 2.Flux lines in BLDC
Fig. 3.Flux linkage Vs Rotor position
Fig. 4.Cogging torque Vs Rotor position
An experimental setup shown in Fig. 5 is used to calculate the cogging torque and validate the result obtained using FEA. The procedure to work out the cogging torque is illustrated through the flow chart shown in Fig. 6.
Fig. 5.Experimental setup for cogging torque measurement
Fig. 6.Flow chart to measure cogging torque
Table 2 gives the cogging torque values obtained using FEA and experimentally. The closeness of the results validates the FEA based modeling of the prototype motor.
Table 2.Comparison of cogging torque
The average torque is computed analytically using the procedure described in [2]. Table 3 summarizes the average torque obtained using FEA and analytically. It is clear that the two values are near perfect thus validating the design of standard BLDC motor.
Table 3.Comparison of average torque
4. Design Optimization Approach Using GRNN
4.1. GRNN
This work involves application of GRNN for data interpolation and design optimization of BLDC motor. From the literature [22] it is understood that GRNN is a variation of radial basis function networks and has spread factor as the only design and varying parameter. It is denoted as where ‘dmax’ is the maximum distance between training points and ‘n’ is the number of training points. The spread factor can be tuned to result in a better performance of GRNN which means larger the value of ‘σ ’ smoother is the response [21].
The architecture of GRNN shown in Fig. 7 consists of three layers namely the input layer, the hidden layer, and the output layer [21].
Fig. 7.GRNN structure
The hidden layer has radial basis neurons, while neurons in the output layer have a linear transfer function. In GRNN, the number of radial basis neurons in the hidden layer is equal to the number of training samples. The distance between the input vector and the training sample form the input to each of the radial basis neurons. The RBF of the input scaled by the spread factor is the neurons output.
For a given number of input-output pairs ‘m’ and {xi, yi}∈ ℜn ×ℜ1 , i = 1,2,... m as the training samples, the GRNN output [21] for a test point x∈ℜn is given by
Where,
4.2. Interpolation using GRNN
In order to achieve the objectives stated in section 2, the effect of varying the design variables on cogging toque and average torque is analysed using FEA. The analysis reveals that both cogging toque and average torque are sensitive and vary non- linearly to the changes in the design variables. Hence, an optimization process is needed to ascertain the behaviour of cogging torque and average torque for each set of design variables. The performance parameters are evaluated using analytical method or FEA. While, analytical method involves approximations, FEA is more accurate but time consuming. Hence, in the optimisation routine GRNN based interpolation is involved.
Also the data available from FEA is discrete and sparse in the design space which may result inaccurate optimisation process as accuracy demands a continuous search space. This is achieved using GRNN that is found to be suitable for the problem mentioned above [17]. Besides GRNN has accurate prediction ability, it is also suitable to represent the objective function in an optimization process. Other advantages of GRNN are that they are fast, accurate and minimize the programming effort once the network is trained.
To validate the accuracy of GRNN and subsequent application of GRNN in the optimization process, the variations of cogging torque and average torque for 120 design combinations are shown in Figs. 8 and Fig. 9 respectively. From the variations it is evident that GRNN results go with the ones obtained using FEA.
Fig. 8.Cogging torque Vs No. of design combinations
Fig. 9.Average torque Vs No. of design combinations
4.3. Optimization using GRNN
The optimization problem is formulated as
Where f1(x) = Maximization of average torque f2 (x) = Minimization of cogging torque
The constants W1 and W2 are weight factors for the objectives average torque and cogging torque respectively.
To determine the optimal design of BLDC motor with minimum cogging torque and maximum average torque, an optimization procedure using GRNN is included in the computation itself that follows training. The optimal design algorithm is explained using the flowchart in Fig. 10. The GRNN algorithm a spread factor of 0.5 is executed using MATLAB and it searches for the optimal values of cogging torque and average torque that are tabulated in Table 4. Further, the results obtained using GRNN are validated using PSO algorithm [23, 24]. The following parameter settings are used in PSO; population size=30; C1=1.5; C2= 1.5; maximum iterations=100. For efficient performance of algorithm, the parameters of PSO and GRNN are selected carefully after performing several simulation runs. It is to be noted that GRNN is used as data interpolation tool in PSO based optimization. The results conclude that GRNN based optimization routine effectively toils as interpolation and optimization algorithm.
Fig. 10.Flow chart for optimization
Table 4.Optimal design obtained using GRNN
Table 5.Design and performance measure for different weight factors
Further, the performance parameters of the optimal design are predicted using FEA. The variations in the cogging torque and average torque for the standard and optimized models are shown in Figs. 11 and Fig. 12 respectively. The variations reveal that there is significant improvement in the torque profile which validates the GRNN based optimization procedure.
Fig. 11.Cogging torque variations between standard and optimized models
Fig. 12.Average torque variations between standard and optimized models
5. Conclusion
In this paper a GRNN based interpolation and design optimization algorithm for a BLDC motor is proposed. The design variables are varied and the effect of varying the design variables on the performance indices is studied by performing FEA. Having obtained discrete data from FEA, GRNN is used for training the data and further optimization. The results of GRNN disclose an optimized BLDC motor design with a significant improvement in the torque profile. The same problem is solved using PSO to validate the GRNN based design solution and the results of PSO prove the precision of the design variables. The performance of the optimal design is analysed using FEA and the results indicate that the optimal design yields the estimated outcome.
References
- R. Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives, CRC press, Boca Raton, 2010.
- Yi-Chang Wu, “Design and Analysis of Brushless DC Motors with Integrated Planetary Gear Trains,” Ph.D. dissertation, National Cheng Kung University, 2005.
- Hanselman, Brushless Permanent-Magnet Motor Design, McGraw-Hill, 1994.
- R. Hendershot Jr. and TJE Miller, Design of Brushless Permanent-Magnet Motor, Magna Physics Publications & Clarendon Press, Oxford, 1994.
- Goga Cvetkovski, Paul Lefley, Lidija Petkovska, and Saeed Ahmed, A New Design of Low Cost Energy Efficient Single Phase Brushless DC Motor, Electrical Review, 2012.
- Yee-PianYang, Yih-Ping Luh and Cheng-Huei Cheung, “Design and Control of Axial-Flux Brushless Dc Motor for Electric Vehicles-Part I: Multi Objective Optimal Design and Analysis,” IEEE Transactions on Magnetics, Vol.40, No.4, pp.1873-1882, 2004. https://doi.org/10.1109/TMAG.2004.828164
- Pan Seok Shin, Sung Hyun Woo, Yanli Zhang, and Chang Seop Koh, “An Application of Latin Hyper-cube Sampling Strategy for Cogging Torque Reduction of Large-Scale Permanent Magnet Motor,” IEEE Transactions on Magnetics, Vol. 44, No. 11, pp. 4421-4424, 2008. https://doi.org/10.1109/TMAG.2008.2002479
- Weizhong Fei, Patrick Chi Kwong Luk, Jian Xin Shen, Bin Xia, and Yu Wang, “Permanent Magnet Flux-Switching Integrated Starter Generator with Different Rotor Configurations for Cogging Torqueand Torque Ripple Mitigations,” IEEE Transactions on Industry Applications, Vol. 47, No. 3, pp. 1247-1256, 2011. https://doi.org/10.1109/TIA.2011.2125750
- Kay-Soon Law and Tze-Shyan Wong, “A Multi Objective Genetic Algorithm for Optimizing the Performance of Hard Disk Drive Motion Control System, IEEE Transactions on Industrial Electronics, Vol. 54, No. 3, pp. 1716-1725, 2007. https://doi.org/10.1109/TIE.2007.894709
- Leandro dos Santos Coelho, Leandro Zavarez Barbosa, and Luiz Lebensztajn, “Multi Objective Particle Swarm Approach for the Design of Brushless Dc Wheel Motor,” IEEE Transactions on Magnetics, Vol.46, No. 8, pp. 2994-2997, 2010. https://doi.org/10.1109/TMAG.2010.2044145
- Haibin Duan et al, “Predator-Prey Brain Storm Optimization for DC Brushless Motor,” IEEE Transactions on Magnetics, Vol. 49, No. 10, pp. 5336-5340, 2013. https://doi.org/10.1109/TMAG.2013.2262296
- Teodora C. Bora et al, “Bat-Inspired Optimization Approach for the Brushless DC Wheel Motor Problem,” IEEE Transactions on Magnetics, Vol. 48, No. 2, pp. 947-950, 2012. https://doi.org/10.1109/TMAG.2011.2176108
- Boussad Boukais and Houcine Zeroug, “Magnet Segmentation for Commutation Torque Ripple Reduction in a Brushless DC Motor Drive,” IEEE Transactions on Magnetics, Vol. 46, No. 11, pp. 3909-3919, 2010. https://doi.org/10.1109/TMAG.2010.2057439
- Sun-Kwon Lee, Gyu-Hong Kang, JinHur, and Byoung-Woo Kim, “Stator and Rotor Shape Designs of Interior Permanent Magnet Type Brushless DC Motor for Reducing Torque Fluctuation,” IEEE Transactions on Magnetics, Vol. 48, No. 11, pp.4662-4665, 2012. https://doi.org/10.1109/TMAG.2012.2201455
- H.M. Cheshmehbeigi and E. Afjei, “Design Optimization of a Homopolar Salient-Pole Brushless DC Machine: Analysis, Simulation, and Experimental Tests,” IEEE Transactions on Energy Conversion, Vol.28, No. 2, pp 289-297, 2013. https://doi.org/10.1109/TEC.2013.2249584
- Mizanoor Rahman Mohammad, Kyung-Tae Kim, and Jin Hur, “Design and Analysis of a Spoke Type Motor With Segmented Pushing Permanent Magnet for Concentrating Air-Gap Flux Density,” IEEE Transactions on Magnetics, Vol. 49, No. 5, pp. 2397-2400, 2013. https://doi.org/10.1109/TMAG.2013.2240664
- L. Kalaivani, P. Subburaj, M. Willjuice Iruthayarajan, “Speed Control of Switched Reluctance Motor with Torque Ripple Reduction using Non-Dominated Sorting Genetic Algorithm (NSGA-II),” International Journal of Electrical Power and Energy Systems, Vol.53. pp. 69-77, 2013. https://doi.org/10.1016/j.ijepes.2013.04.005
- M.Balaji and V.Kamaraj, “Evolutionary Computation Based Multi-Objective Pole Shape Optimization of Switched Reluctance Machine,” International Journal of Electrical Power and Energy Systems, Vol. 43, pp.63-69, 2012. https://doi.org/10.1016/j.ijepes.2012.05.011
- H. Sahraoui, H. Zeroug, and H. A. Toliyat, “Switched Reluctance Motor Design Using Neural-Network Method With Static Finite-Element Simulation,” IEEE Transactions on Magnetics, Vol. 43, No. 12, pp. 4089-4095, 2007. https://doi.org/10.1109/TMAG.2007.907990
- Funda Sahin, H. Bülent Ertan, And Kemal Leblebicio˘Glu, “Optimum Geometry for Torque Ripple Minimization of Switched Reluctance Motors,” IEEE Transactions on Energy Conversion, Vol. 15, No. 1, pp. 30-39, 2000. https://doi.org/10.1109/60.849113
- Weizhong Yan, “Toward Automatic Time-Series Forecasting Using Neural Networks,” IEEE Transactions on Neural Networks and Learning Systems, Vol. 23, No. 7, pp. 1028-1039, 2012. https://doi.org/10.1109/TNNLS.2012.2198074
- S. Kaykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1990.
- J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proc. of IEEE International Conference on Neural Networks (ICNN’95), No. 4, pp. 1942-1948, 1995.
- R. Eberhart and J. Kennedy, “A New Optimizer Using Particle Swarm Optimization,” in Proc. of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, pp. 39-43, 1995.
Cited by
- Multiobjective Krill Herd Algorithm for Electromagnetic Optimization vol.52, pp.3, 2016, https://doi.org/10.1109/TMAG.2015.2483060
- A New Surrogate-assisted Robust Multi-objective Optimization Algorithm for an Electrical Machine Design pp.2093-7423, 2019, https://doi.org/10.1007/s42835-019-00120-1