DOI QR코드

DOI QR Code

A Network-Aware Congestion Control Scheme for Improving the Performance of C-TCP over HBDP Networks

HBDP 네트워크에서 C-TCP의 성능 향상을 위한 네트워크 적응적 혼잡제어 기법

  • 오준열 (광운대학교 전자통신공학과) ;
  • 윤두열 (광운대학교 전자통신공학과) ;
  • 정광수 (광운대학교 전자통신공학과)
  • Received : 2015.07.13
  • Accepted : 2015.10.11
  • Published : 2015.12.15

Abstract

While today's networks have been shown to exhibit HBDP (High Bandwidth Delay Product) characteristics, the legacy TCP increases the size of the congestion window slowly and decreases the size of the congestion window drastically such that it is not suitable for HBDP Networks. In order to solve this problem with the legacy TCP, many congestion control TCP mechanisms have been proposed. C-TCP (Compound-TCP) is a hybrid TCP which is a synergy of delay-based and loss-based approaches. C-TCP adapts the decreasing rate of the delay window without considering the congestion level, leading to degradation of performance. In this paper, we propose a new scheme to improve the performance of C-TCP. By controlling the increasing and decreasing rates according to the congestion level of the network, our proposed scheme can improve the bandwidth occupancy and fairness of C-TCP. Through performance evaluation, we show that our proposed scheme offers better performance in HBDP networks as compared to the legacy C-TCP.

오늘날 네트워크는 HBDP (High Bandwidth Delay Product) 특징을 가지고 있으며, 기존 TCP는 혼잡 윈도우 크기의 느린 증가와 패킷 손실 시 급격한 감소로 인하여 HBDP 네트워크에 적합하지 못하다. 기존 TCP의 문제를 해결하기 위해 새로운 혼잡 제어 기법에 관한 많은 연구들이 진행되었다. C-TCP (Compound-TCP)는 손실기반 TCP와 지연기반 TCP를 결합한 하이브리드 TCP이다. C-TCP의 목적은 빠른 대역폭 점유, 조기 혼잡예측에 의한 혼잡 방지와 공정성 보장이다. 하지만 C-TCP는 혼잡 정도를 고려하지 않는 지연 윈도우 감소율을 적용하기 때문에 성능의 저하를 초래한다. 제안하는 기법은 네트워크의 혼잡 상태에 따라 적응적으로 지연 윈도우의 증감률을 조절함으로써 C-TCP의 대역폭 점유 효율과 공정성을 개선한다. 실험 결과를 통해 HBDP 네트워크에서 제안하는 기법이 기존 C-TCP보다 향상된 성능을 보임을 확인하였다.

Keywords

Acknowledgement

Grant : 방송용 영상 인식 기반 객체 중심 지식융합 미디어 서비스 플랫폼 개발

Supported by : 정보통신기술진흥센터

References

  1. D. Won, Y. Cho, K. Park, and D. Suh, "High Resolution Video Streaming Method by Cloud and DASH," Proc. of the IEEE International Conference on Consumer Electronics, pp. 552-553, Jan. 2014.
  2. G. Thompson and Y. Chen, "IPTV: Reinventing Television in the Internet Age," IEEE Internet Computing, Vol. 12, No. 3, pp. 11-14, May 2009.
  3. Modifying TCP's Congestion Control for High Speeds [Online]. Available: http://www.icir.org/floyd/hstcp. html (downloaded 2014, May 10)
  4. S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford, and A. Pescape, "Broadband Internet Performance: A View From the Gateway," Proc. of the ACM Special Interest Group on Data Communication, pp. 134-145, Aug. 2011.
  5. V. Kushwaha and Ratneshwer, "An Analysis of Performance Parameters for Congestion Control in High-speed Wired Network," Proc. of the International Conference on Computer and Communication Technology, pp. 133-138, Sep. 2013.
  6. C. Callegari, S. Giordano, M. Pagano, and T. Pepe, "Behavior Analysis of TCP Linux Variants," Computer Networks, Vol. 56, No. 1, pp. 462-476, Jan. 2012. https://doi.org/10.1016/j.comnet.2011.10.002
  7. A. K. Singh, Meenu, "A Survey on Congestion Control Mechanisms in packet Switch networks," Proc. of the Advances in Computer Engineering and Applications, pp. 902-906, Mar. 2015.
  8. K. Tan, J. Song, Q. Zhang, and M. Sridharan, "A Compound TCP Approach for High-speed and Long Distance Networks," Proc. of the IEEE Infocommunications, pp. 1-12, Apr. 2006.
  9. S. Floyd, "HighSpeed TCP for Large Congestion Windows," RFC 3649, Dec. 2003.
  10. T. Kelly, "Scalable TCP: Improving Performance in High-Speed Wide Area Networks," ACM Special Interest Group on Data Communication Computer Communication Review, Vol. 33, No. 2, pp. 83-91, Feb. 2003.
  11. S. Ha, I. Rhee, and L. Xu, "CUBIC: A New TCPfriendly High-speed TCP Variant," ACM Special Interest Group on Operating Systems Operating System Review, Vol. 42, No. 5, pp. 64-74, Jul. 2008.
  12. Lawrence S. Brakmo, Sean W. O'Malley, and Larry L. Peterson, "TCP Vegas: New Techniques for Congestion Detection and Avoidance," ACM Special Interest Group on Data Communication Computer Communication Review, Vol. 24, No. 4, pp. 24-35, Oct. 1994.
  13. David X. Wei, Cheng Jin, Steven H. Low, and Sanjay Hegde, "FAST TCP: Motivation, Architecture, Algorithms, Performance," IEEE/ACM Transactions on Networking, Vol. 14, No. 6, pp. 1246-1259, Dec. 2006. https://doi.org/10.1109/TNET.2006.886335
  14. P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and Y. Lu, "TCP Congestion Avoidance Algorithm Identification," IEEE/ACM Transactions on Networking, Vol. 22, No. 4, pp. 1311-1324, Aug. 2014. https://doi.org/10.1109/TNET.2013.2278271
  15. H. Jung, S. Kim, and S. Kang, "Adaptive Delaybased Congestion Control for High Bandwidth- Delay Product Networks," Proc. of the IEEE Infocommunications, pp. 2885-2893, Apr. 2011.
  16. The Network Simulator NS-2 [Online]. Available: http://www.isi.edu/nsnam/ns/ (downloaded 2014, Apr. 10)
  17. D. Chiu and R. Jain, "Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks," Computer Networks and ISDN Systems, Vol. 17, No. 1, pp. 1-14, Jun. 1989. https://doi.org/10.1016/0169-7552(89)90019-6