DOI QR코드

DOI QR Code

Floral Pigmentation and Expression of Anthocyanin-Related Genes in Bicolored Roses 'Pinky Girl' as Affected by Temporal Heat Stress

일시적 고온 스트레스가 복색 장미 'Pinky Girl'의 화색 및 관련 유전자 발현에 미치는 영향

  • Lee, Seul Ki (Department of Environmental Horticulture, The University of Seoul) ;
  • Kim, Wan Soon (Department of Environmental Horticulture, The University of Seoul)
  • 이슬기 (서울시립대학교 환경원예학과) ;
  • 김완순 (서울시립대학교 환경원예학과)
  • Received : 2015.05.04
  • Accepted : 2015.08.14
  • Published : 2015.12.31

Abstract

This study was conducted to investigate petal pigmentation and the expression patterns of anthocyanin-related genes in bicolored roses 'Pinky Girl' treated with temporal heat stress (THS). Cyanin accumulation in petals was correlated with floral bud development and started rapidly as floral buds began to open, defined as the $4^{th}$ stage of floral bud development ($S_4$). This stage seems to be most susceptible to petal pigmentation. The total of cyanin pigmentation at blooming was significantly decreased (by 45.5%) with exposure to THS ($39/18^{\circ}C$ for three days at $S_4$) in comparison with control. Meanwhile, the expression of anthocyanin-related genes such as CHS, CHI, F3'H, DFR, ANS, 3GT, and 5GT was relatively promoted by THS. Only F3H was less expressed (by 26.7%) with THS treatment; thus, F3H could be a key gene for bicolor promotion in 'Pinky Girl' among anthocyanin-related genes. Overall, the expression pattern of the most anthocyanin-related genes did not match the trends of cyanin pigmentation in petals. These results suggest that floral pigmentation could be associated with other mechanisms related to anthocyanin biosynthesis such as post-translational effects and regulatory genes.

본 연구는 일시적인 고온 스트레스 처리가 복색 장미 'Pinky Girl'의 화아 착색과 안토시아닌 생합성 관련 유전자들의 발현 양상에 미치는 영향을 알아보고자 수행되었다. 꽃잎에서 cyanin의 축적은 화아의 발육단계와 연관이 있으며 화아 발육 과정에서 꽃잎이 출현하는 4단계($S_4$)에서 급격하게 일어났다. 따라서 $S_4$ 단계가 꽃잎 착색에 가장 민감한 시기로 판단된다. $S_4$ 단계에서 3일간 고온 스트레스($39/18^{\circ}C$)를 받은 고온처리구에서 개화 당시 꽃잎의 cyanin 착색이 대조구와 비교하여 45.5% 감소하였다. 한편, 안토시아닌 생합성 관련 유전자인 CHS, CHI, F3'H, DFR, ANS, 3GT, 5GT의 발현은 고온처리구에서 오히려 촉진되었다. 예외적으로 F3H의 발현은 고온처리구에서 26.7% 감소하여 'Pinky Girl'의 복색 발현에 의미 있는 유전자로 확인되었다. 하지만 대부분 안토시아닌 생합성 관련 유전자들의 발현은 꽃잎에서의 cyanin 착색 경향과 비례적이지 않았다. 따라서 장미 꽃잎의 화색소 축적은 번역 이후 효과와 조절유전자와 같은 안토시아닌 생합성과 관련된 다른 복잡한 메커니즘이 연관되어 있을 것으로 판단되었다.

Keywords

References

  1. Burchi, G., D. Prisa, A. Ballarin, and P. Menesatti. 2010. Improvement of flower color by means of leaf treatments in lily. Sci. Hortic. 125:456-460. https://doi.org/10.1016/j.scienta.2010.04.028
  2. Byun, M.S., K.N. Chang, J.S. Kim, M.J. Kim, and K.W. Kim. 2005. Changes tendency of the flower colors in cut Rosa hybrida cultivars. J. Korean Flower Res. Soc. 13:347-353.
  3. Christie, P.J., M.R. Alfenito, and V. Walbot. 1994. Impact of lowtemperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541-549. https://doi.org/10.1007/BF00714468
  4. Dela, G., E. Or, R. Ovadia, A. Nissim-Levi, D. Weiss and M. Oren-Shamir. 2003. Change in anthocyanin concentration and composition in 'Jagure' rose flowers due to transient hightemperature conditions. Plant Sci. 164:333-340.
  5. Huh, E.J., H.K. Shin, S.Y. Choi, O.G. Kwon, and Y.R. Lee. 2008. Thermosusceptible developmental stage in anthocyanin accumulation and color response to high temperature in red chrysanthemum cultivars. Korean J. Hortic. Sci. Technol. 26:357-361.
  6. Iida, S., Y. Morita, J.D. Choi, K.I. Park, and A. Hoshino. 2004. Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories. Adv. Biophys. 38:141-159. https://doi.org/10.1016/S0065-227X(04)80136-9
  7. Inagaki, Y., Y. Hisatomi, T. Suzuki, K. Kasahara, and S. Iida. 1994. Isolation of a suppressor-mutator/enhancer-like transposable element, Tpn1, from Japanese morning glory bearing variegated flowers. Plant Cell 6:375-383. https://doi.org/10.1105/tpc.6.3.375
  8. Itoh, Y., D. Higeta, A. Suzuki, H. Yoshida, and Y. Ozeki. 2002. Excision of transposable elements from the chalcone isomerase and dihydroflavonol 4-reductase genes may contribute to the variegation of the yellow-flowered carnation (Dianthus caryophyllus). Plant Cell Physiol. 43:578-585. https://doi.org/10.1093/pcp/pcf065
  9. Jeon, W.H. 2001. Molecular characterization of an UDP-glucose flavonoid glucosyl transferase (ufgt) gene during the colour development in fruits and flowers. MS thesis, Dankook Univ., Korea.
  10. Kim, J.H. 1999. The nature of flower color. JinSol Ltd. Seoul, Korea.
  11. Kim, W.S. and J.H. Lieth. 2012. Simulation of year-round plant growth and nutrient uptake in Rosa hybrida over flowering cycles. Hortic. Environ. Biotechnol. 53:193-203. https://doi.org/10.1007/s13580-012-0054-y
  12. Korea Agro-Fisheries & Food Trade Corporation. 2014. The auction market price of flowers from 2013 to 2014. http://www.yfmc.co.kr.
  13. Koes, R., W. Verweij, and F. Quattrocchio. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 10:236-242. https://doi.org/10.1016/j.tplants.2005.03.002
  14. Leyva, A., J.A. Jarillo, J. Salinas, and J.M. Marinez-Zapater. 1995. Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRANs of Arabidopsis thaliana in a light-dependent manner. Plant Physiol. 108:39-46. https://doi.org/10.1104/pp.108.1.39
  15. Li, Q., J. Wang, H.Y. Sun, and X. Shang. 2014. Flower color patterning in pansy (Viola x wittrockiana Gams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas. Plant Physiol. Biochem. 84:134-141. https://doi.org/10.1016/j.plaphy.2014.09.012
  16. Longo, L. and G. Vasapollo. 2005. Anthocyanins from bay (Laurus nobilis L.) berries. J. Agric. Food Chem. 53:8063-8067. https://doi.org/10.1021/jf051400e
  17. McGuire, G.R. 1992. Reporting of objective color measurements. Hortic. Sci. 27:1254-1255.
  18. Mori, K., S. Sugaya, and H. Gemma. 2005. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci. Hortic. 105:319-330. https://doi.org/10.1016/j.scienta.2005.01.032
  19. Murray, JR. and W.P. Hackett. 1991. Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiol. 97:343-351. https://doi.org/10.1104/pp.97.1.343
  20. Ogata, J., Y. Kanno, Y. Itoh, H. Tsugawa, and M. Suzuki. 2005. Anthocyanin biosynthesis in roses. Nature 435:757-758. https://doi.org/10.1038/nature435757a
  21. Quintana, A., J. Albrechtova, R.J. Griesbach, and R. Freyre. 2007. Anatomical and biochemical studies of anthocyanidins in flowers of Anagallis monelli L. (Primulaseae) hybrids. Sci. Hortic. 112:413-421. https://doi.org/10.1016/j.scienta.2007.01.024
  22. Saito, R., N. Fukuta, A. Ohmiya, Y. Itoh, Y. Ozeki, K. Kuchitsu, and M. Nakayama. 2006. Regulation of anthocyanin biosynthesis involved in the formation of marginal picotee petals in Petunia. Plant Sci. 170:828-834. https://doi.org/10.1016/j.plantsci.2005.12.003
  23. Shvarts, M., A. Borochov, and D. Weiss. 1997. Low temperature enhances petunia flower pigmentation and induces chalcone synthase gene expression. Physiol. Plant. 99:67-72. https://doi.org/10.1111/j.1399-3054.1997.tb03432.x
  24. Stommel, J.R., G.J. Lightbourn, B.S. Winkel, and R.J. Griesbach. 2009. Transcription factor families regulate the anthocyanin biosynthetic pathway in Capsicum annuum. J. Am. Soc. Hortic. Sci. 134:244-251.
  25. Sung, S.Y., S.H. Kim, V. Velusamy, Y.M. Lee, B.K. Ha, J.B. Kim, S.Y. Kang, H.G. Kim, and D.S. Kim. 2013. Comparative gene expression analysis in a highly anthocyanin pigmented mutant of colorless chrysanthemum. Mol. Biol. Rep. 40:5177-5189. https://doi.org/10.1007/s11033-013-2620-5
  26. Vaknin, H., A. Bar-Akiva, R. Ovadia, A. Nissim-Levi, I. Forer, D. Weiss, and M. Oren-Shamir. 2005. Active anthocyanin degradation in Brunfelsia calycina (yesterday-today-tomorrow) flowers. Planta 222:19-26. https://doi.org/10.1007/s00425-005-1509-5
  27. Wei, Y.Z., F.C. Hu, G.B. Hu, X.J. Li, X.M. Huang, and H.C. Wang. 2011. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn. PLoS One. 6:e19455. https://doi.org/10.1371/journal.pone.0019455
  28. Weiss, D. 2000. Regulation of flower pigmentation and growth: Multiple signaling pathways control anthocyanin synthesis in expanding petals. Physiol. Plant. 110:152-157. https://doi.org/10.1034/j.1399-3054.2000.110202.x
  29. Yamagishi, M. 2011. Oriental hybrid lily Sorbonne homologue of LhMYB12 regulates anthocyanin biosyntheses in flower tepals and tepal spots. Mol. Breed. 28:381-389. https://doi.org/10.1007/s11032-010-9490-5
  30. Zhang, D., B. Yu, J. Bai, M. Qian, Q. Shu, J. Su, and Y. Teng. 2012. Effects of high temperatures on UV-B/visible irradiation induced postharvest anthocyanin accumulation in 'Yunhongli No. 1' (Pyrus pyrifolia Nakai) pears. Sci. Hortic. 134:53-59. https://doi.org/10.1016/j.scienta.2011.10.025

Cited by

  1. Floral pigment-scent associations in eight cut rose cultivars with various petal colors vol.61, pp.4, 2015, https://doi.org/10.1007/s13580-020-00249-3
  2. Heat stress to the developing floral buds decreases the synthesis of flowering pigments and scent compounds in the rose petals vol.1291, pp.None, 2015, https://doi.org/10.17660/actahortic.2020.1291.30