DOI QR코드

DOI QR Code

시험과 전산해석을 이용한 고고도용 프로펠러 성능 분석

Performance Evaluation of Propeller for High Altitude by using Experiment and Computational Analysis

  • 투고 : 2015.03.02
  • 심사 : 2015.10.28
  • 발행 : 2015.12.01

초록

고고도 장기체공 축소형 전기 동력 무인기(EAV-2H+)용 프로펠러의 성능을 평가하기 위해 풍동시험과 전산해석을 수행하였다. 3종의 프로펠러에 대해 성능 곡선을 측정하고, 운용 조건을 평가하여 EAV-2H+에 적용 가능 여부를 판단하였다. 낮은 rpm 영역에서 성능 계수의 저하 경향을 확인하였다. 프로펠러 성능에 미치는 강체 천이 테이프 부착 효과를 측정하고 분석하였다. 상용 전산유체역학 코드를 사용한 성능 해석을 수행하여 시험과 해석의 추력계수-동력계수 선도가 잘 일치함을 확인하였다. 전진비에 따른 성능 계수를 비교하고 결과 차이에 기여하는 시험장치의 영향을 평가하였다. 시험에서 관찰된 낮은 rpm 영역의 성능 감소 경향을 transition SST 모델이 유사하게 모사함을 확인하였다. 낮은 레이놀즈수에 의한 깃 요소의 공력 성능 저하가 프로펠러 성능 감소의 주원인으로 분석되었다. 고고도 조건 해석으로부터 프로펠러 성능 저하를 확인하였다.

Wind tunnel experiment and computational analysis have been carried out to evaluate the performance of propeller for scale electric-powered HALE UAV, named EAV-2H+. Performance curves are measured for three propellers and their adequacy for EAV-2H+ installation is examined through consideration of operating conditions. Decline in performance coefficients is observed in low rpm region. Also, the effect of transition tape on propeller performance is measured and analyzed. The computational performance analyses are carried out by using commercial CFD program. The thrust and power coefficient from computations show good agreement with experimental results. Performance coefficients are compared and the influence of measurement device which contributes to discrepancy of the results is examined. Transition SST model is confirmed to yield the tendency of performance decline in low rpm range, similar to experimental observation. The decrease in aerodynamic performance of blade element due to low Reynolds number is identified to cause the decline in propeller performance. Analyses for high altitude conditions confirms degradation in propeller performance.

키워드

참고문헌

  1. Romeo, G., Frulla, G., Cestino, E., and Corsino, G., "HELIPLAT : Design, Aerodynamic and Structural Analysis of Long-Endurance, Solar-Powered Stratospheric Platform," Journal of Aircraft, Vol. 41, No. 6, 2004, pp. 1505-1520. https://doi.org/10.2514/1.2723
  2. Nickol, C. L., Guynn, M. D., Kohout, L. L., and Ozoroski, T. A., "High Altitude Long Endurance Air Vehicle Analysis of Alternatives and Technology Requirements Development," AIAA 2007-1050, 2007.
  3. Lee, Y., Hwang, S., Kim, S., Kim, C., Ahn, S., and Lee, D., "Development of an Electrically Powered HALE UAV," Proceeding of the 2013 KSAS Spring Conference, 2013, pp. 1097-1100.
  4. Lee, Y., Hwang, S., Kim, S., Park, D., Kim, C., Kim, S., and Chang, B., "Development and Flight Tests of a Scaled Electrically Powered HALE UAV," Proceeding of the 2014 KSAS Fall Conference, 2014, pp. 797-800.
  5. Hwang, S., Kim, S., Lee, Y., and Kim, C., "Design of the Solar Powered Electric Driven High Altitude Long Endurance(HALE) Unmanned Aerial Vehicle," Proceeding of the 2014 KSAS Fall Conference, 2014, pp. 785-788.
  6. Chen, W. and Bernal, L. P., "Design and Performance of Low Reynolds Number Airfoils for Solar-Powered Flight," AIAA 2008-316, 2008.
  7. Hu, H. and Yang, Z., "An Experimental Study of the Laminar Flow Separation on Low-Reynolds-Number Airfoil," Journal of Fluids Engineering, Vol. 130, 2008.
  8. http://www.propdesigner.co.uk
  9. Cho, L., Lee, S., and Cho. J., "Numerical Analyses and Wind Tunnel Tests of a Propeller for the MAV Propulsion," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 38, No. 10, 2010, pp. 955-965. https://doi.org/10.5139/JKSAS.2010.38.10.955
  10. Park, Y. and Kim, B., "The Calculation of Propeller Thrust using Semi-infinite Helical Vortices and a Wind tunnel Test," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 39, No. 9 , 2011, pp. 816-822. https://doi.org/10.5139/JKSAS.2011.39.9.816
  11. Park, P., Hwang, O., Kim, Y., Kim, C., and Kwon, K., "Wind Tunnel Test on Propellers for Middle Size Electric Propulsion UAV," Proceeding of the 2011 KSPE Fall Conference, 2011, pp. 784-788.
  12. Monk, J. S., "A Propeller Desing and Analysis Capability Evaluation for High Altitude Application," M. S. Dissertation, University of the Witwatersrand, Republic of South Africa, 2011.
  13. Cho, K., Kim, H., Park, I., and Jang, S., "Application of CFD in The Analysis of Aerodynamic Characteristics for Aircraft Propellers," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 11, 2012, pp. 917-926. https://doi.org/10.5139/JKSAS.2012.40.11.917
  14. Park, Y. M. and Lee, H. C., "Numerical Analysis of Aerodynamic Characteristics for Turboprop Regional Aircraft," Proceeding of the 2014 KSCFE Spring Conference, 2014, pp. 156-157.
  15. Cho, J. H. and Cho, J., "Numerical Study on the Power-on Effect of a Pusher-propeller Aircraft using CFD," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 1, 2014, pp. 59-66. https://doi.org/10.5139/JKSAS.2014.42.1.59
  16. ANSYS FLUENT Ver. 13 Software Package, Ansys Fluent Inc., Canonsburg, PA, USA.
  17. Park, D., Kim, S., Lee, Y., and Kim, C., "Performance Evaluation of Propeller for Electrically Powered HALE UAV - Part II. Computational Analysis," Proceedings of the 2014 KSAS Fall Conference, 2014, pp. 181-184.

피인용 문헌

  1. Design and Performance Analysis of Propeller for Solar-powered HALE UAV EAV-3 vol.44, pp.9, 2016, https://doi.org/10.5139/JKSAS.2016.44.9.759
  2. Design and Performance Evaluation of Propeller for Solar-Powered High-Altitude Long-Endurance Unmanned Aerial Vehicle vol.2018, pp.1687-5974, 2018, https://doi.org/10.1155/2018/5782017