DOI QR코드

DOI QR Code

0.4MW 아크 가열 풍동 시험을 통한 삭마 재료의 표면 특성 연구

A Study on Surface Properties of Ablative Materials from 0.4MW Arc-Heated Wind Tunnel Test

  • Kim, Nam Jo (Department of Aerospace Engineering, Chonbuk National University) ;
  • Oh, Philyong (High-Enthalpy Plasma Research Center, Chonbuk National University) ;
  • Shin, Eui Sup (Department of Aerospace Engineering, Chonbuk National University)
  • 투고 : 2015.08.19
  • 심사 : 2015.11.27
  • 발행 : 2015.12.01

초록

고온 환경에 노출되는 열 보호 시스템의 삭마 현상에 의한 표면 침식은 주로 재료의 두께 방향으로 진행된다. 본 논문에서는 0.4MW 아크 가열 풍동을 통한 삭마 실험을 수행하고 삼차원 표면 측정기를 이용하여 삭마 재료의 표면 상태를 측정하였다. 특히, 정밀한 삼차원 이미지 데이터를 획득하여 고온 플라즈마 환경에서 진행된 삭마 재료의 표면 거칠기와 침식량을 산출하였다. 이와 같은 삭마 실험 전후에 발생된 시편의 질량 감소도 함께 측정함으로써 표면 특성의 변화를 정량적으로 비교 및 분석하였다.

Ablative materials in a thermal protection system for atmospheric re-entry suffers from the most severe heat fluxes and temperatures, which induces surface recession in the thickness direction. In this paper, a 0.4MW arc-heated wind tunnel is operated to test for ablative materials, and a non-contact three-dimensional surface measuring system is used to evaluate the different surface characteristics of them. In particular, by postprocessing the three-dimensional image data, the surface roughness and recession of ablative materials can be calculated before and after the wind tunnel test. Moreover, the surface properties are analyzed quantitatively by comparing volume and mass losses of the test specimens.

키워드

참고문헌

  1. Yun, N. G., Jung, B. and Cho, Y. J., "Ablative Composite Materials for Rocket ropulsion System," Composites Research, Vol. 3, No. 2, 1990, pp. 57-64.
  2. Splinter, S. C., Kim, S. B. and Gragg, J. G., "Comparative Measurements of Earth and Martian Entry Environments in the NASA Langley HYMETS Facility," 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011.
  3. Vancrayenest, B. and Fletcher, D. G., "Emission Spectroscopic Survey of Graphite Ablation in the VKI Plasmatron," Joint Thermophysics and Heat Transfer Conference, 2006.
  4. Asma, C. O., Helber, B., Di Lello, L., Panerai, F. and Magin, T., "Infrared Thermography Measurements on Ablative Thermal Protection System for Interplanetary Space Vehicles," 10th International Conference on Quantitative InfraRed Thermography, 2010.
  5. Vignoles, G. L., Lachaud, J., Aspa, Y. and Goyheneche, J.-M., "Ablation of Carbon-Based Materials: Multiscale Roughness Modeling," Composites Science and Technology, Vol. 69, 2009, pp. 1470-1477. https://doi.org/10.1016/j.compscitech.2008.09.019
  6. Milos, F. S., Chen, Y.-K. and Gokcen, T., "Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator," Journal of Spacecraft and Rockets, Vol. 49, No. 5, 2012, pp. 894-904. https://doi.org/10.2514/1.A32298
  7. Shiou, F.-J. and Asmare, A., "Parameters Optimization on Surface Roughness Improvement of Zerodur Optical Glass Using an Innovative Rotary Abrasive Fluid Multi-Jet Polishing Process," Precision Engineering, Vol. 42, 2015, pp. 93-100. https://doi.org/10.1016/j.precisioneng.2015.04.004
  8. Cesakova, I., Zetek, M. and Svarc, V., "Evaluation of Cutting Tool Parameters," 24th DAAAM International Symposium on Intelligent Manufacturing and Automation, Vol. 69, 2014, pp. 1105-1114.
  9. Petraconi, G., Essiptchouk, A. M., Charakhowski, L. I., Otani, C., Maciel, H. S., Pessoa, R. S., Gregori, M. L. and Costa, S. F., "Degradation of Carbon-Based Materials under Ablative Conditions Produced by a High Enthalpy Plasma Jet," Journal of Aerospace Technology and Management, Vol. 2, No. 1, 2010, pp. 33-40. https://doi.org/10.5028/jatm.2010.02013340