DOI QR코드

DOI QR Code

Investigation of detection wavelength of Quantum Well Infrared-Photodetector

  • Hwang, S.H. (Center for Opto-Electronics Materials and Devices, Korea Institute of Science and Technology (KIST)) ;
  • Lim, J.G. (Center for Opto-Electronics Materials and Devices, Korea Institute of Science and Technology (KIST)) ;
  • Song, J.D. (Center for Opto-Electronics Materials and Devices, Korea Institute of Science and Technology (KIST)) ;
  • Shin, J.C. (Center for Opto-Electronics Materials and Devices, Korea Institute of Science and Technology (KIST)) ;
  • Heo, D.C. (Center for Opto-Electronics Materials and Devices, Korea Institute of Science and Technology (KIST)) ;
  • Choi, W.J. (Center for Opto-Electronics Materials and Devices, Korea Institute of Science and Technology (KIST))
  • Received : 2015.10.22
  • Accepted : 2015.11.09
  • Published : 2015.11.30

Abstract

We report on GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) that can cover the spectral range of $3.6-25{\mu}m$. One advantage of the GaAs QWIPs is the wavelength tenability as a function of their structural parameters. We have performed a systematic calculation on the detection wavelength of a typical $GaAs/Al_xGa_{1-x}As$ multi-quantum-well photodetector, with the aluminum mole fraction (x) of $Al_xGa_{1-x}As$ barrier in the range of 0.15-0.43 and the quantum-well width range from 30 to 60 $60{\AA}$. Design and fabrication of a QWIP based on $GaAs/Al_{0.23}Ga_{0.77}As$ structure with $37{\AA}$-thick well width has been carried out. The calculated operation wavelength of the QWIP is in a good agreement with the experimental data taken by photo response and activation energy calculation from thermal quenching of integrated photoluminescence.

Keywords

References

  1. R. L. Whitney, F. W. Adams, and K. F. Cuff, Intersubband Transitions in Quantum Wells (Plenum, New York, 1992) NATO ASI Series, B, p. 288.
  2. M. O. Manasreh, Semiconductor Quantum Wells and Superlattices for Long Wave-length Infrared Detectors (Artech House, Boston, 1993).
  3. E. H. Li, Jpn. J. Appl. Phys. 36, 3418 (1997). https://doi.org/10.1143/JJAP.36.3418
  4. S. A. Lyon, Preliminary Reports, Memoranda and Technical Notes (Mater. Res. Council Summer Conf, La Jolla, July, 1982) p. 51.
  5. L. C. Chiu, J. S. Smith, S. Margalit, and A. Yariv, Appl. Phys. Lett. 43, 331 (1983). https://doi.org/10.1063/1.94345
  6. L. C. Wesh and S. J. Eglash, Appl. Phys. Lett. 46, 1156 (1985). https://doi.org/10.1063/1.95742
  7. J. S. Smith, L. C. Chiu, S. Margalit, A. Yariv, and A. Y. Cho, J. Vac. Sci. Technol. B 1, 376 (1983).
  8. B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker, and R. J. Malik, Appl. Phys. Lett. 50, 1092 (1987). https://doi.org/10.1063/1.97928
  9. B. F. Levine, C. G. Bethea, K. K. Choi, J. Walker, and R. J. Malik, J. Appl. Phys. 64, 1591 (1988). https://doi.org/10.1063/1.341794
  10. B. F. Levine, C. G. Bethea, G. Hansnain, J. Walker, and R. J. Malik, Appl. Phys. Lett. 53, 296 (1988). https://doi.org/10.1063/1.99918
  11. G. Hansnain, B. F. Levine, C. G. Bethea, R. F. Logan, J. Walker, and R. J. Malik, Appl. Phys. Lett. 54, 2515 (1989). https://doi.org/10.1063/1.101079
  12. C. G. Bethea, B. F. Levine, G. Hansnain, J. Walker, and R. J. Malik, J. Appl. Phys. 66 July 15 (1989).
  13. D. D. Coon and R. P. G. karunasiri, Appl. Phys. Lett. 45, 649 (1984) https://doi.org/10.1063/1.95343
  14. D. D. Coon, R. P. G. karunasiri, and H. C. Liu, J. Appl. Phys. 60, 2636 (1986). https://doi.org/10.1063/1.337085
  15. K. K. Choi, J. Appl. Phys. 73, 5230 (1993). https://doi.org/10.1063/1.353751
  16. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, Les Ulis, France, 1998).
  17. Y. Gusakov, E. Finkman, G. Bahir, and D. Ritter, Appl. Phys. Lett. 79, 2508 (2001). https://doi.org/10.1063/1.1408908
  18. W. J. Bartels, J. Hornstra, and D. J. W. Lobeek, Acta Crystalloge, A 42, 539 (1986). https://doi.org/10.1107/S0108767386098768
  19. J. D. Lambkin, D. J. Dunstan, K. P. Homewood, L. K. Howard, and M. T. Emery, Appl. Phys. Lett. 57, 1986 (1990). https://doi.org/10.1063/1.103987
  20. M. Vening, D. J. Dunstan, and K. P. Homewood, Phys. Rev. B 48 (1993) 2412. https://doi.org/10.1103/PhysRevB.48.2412
  21. S. -K. Park, Y. J. Park, E. K. Kim, C. J. Park, H. Y. Cho, Y. S. Lim, J. Y. Lee, and C. Lee, Jpn. J. Appl. Phys. 41 (2002) 4378. https://doi.org/10.1143/JJAP.41.4378
  22. F. E. Wiliams and H. J. Erying, J. Chem. Phys. 15, 289 (1947). https://doi.org/10.1063/1.1746499
  23. D. Bimberg and M. Sondergeld, Phyica. Rev. B 4, 3451 (1971). https://doi.org/10.1103/PhysRevB.4.3451
  24. E. Pelve, F. Beltram, C. G. Bethea, B. F. Levine, V. O. Shen, S. J. Hsieh, and R. R. Abbott, J. Appl. Phys. 86, 5656 (1989).
  25. M. Matsuura and T. Kamizato, Phys. Rev. B 33, 8385-8389 (1986). https://doi.org/10.1103/PhysRevB.33.8385