DOI QR코드

DOI QR Code

수직 횡등방성 전기적 이방성을 고려한 자기지전류탐사 모델링

Magnetotelluric modeling considering vertical transversely isotropic electrical anisotropy

  • Kim, Bitnarae (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Nam, Myung Jin (Department of Energy & Mineral Resources Engineering, Sejong University)
  • 투고 : 2015.09.22
  • 심사 : 2015.11.30
  • 발행 : 2015.11.30

초록

자연 전자기장을 이용하여 지하 매질의 전기적 구조를 규명하는 자기지전류(magnetotelluric; MT) 탐사의 정확한 해석을 위해서는 특정 전기적 구조에 대한 정확한 수치적 반응을 구할 수 있는 3차원 모델링이 필수적이다. 특히, 매질내에 전기적 이방성이 있을 때는 MT 반응이 달라지므로 전기적 이방성의 영향을 고려한 MT 탐사 모델링이 필요하다. 특히, MT 탐사기법을 이용한 지열저류층의 모니터링과 같이 MT 반응의 작은 변화를 분석해야 하는 시간경과 자료의 해석의 경우, 대상 지역에 이방성이 존재할 경우 이를 고려할 수 있는 정확한 모델링이 필수적이다. 이 연구에서는 기존의 등방성만을 고려하던 유한차분법 MT 모델링 알고리듬을 수직 혹은 수평 횡등방성 이방성을 고려할 수 있도록 개선하였다. 개발한 알고리듬을 박리층 모델을 이용하여 검증한 후, 수직횡등방성 이방성이 MT 반응에 미치는 영향에 대해서 분석하였다. 향후에는 수평 횡등방성 이방성이 MT 반응에 미치는 영향에 대해서도 분석하고자 하며, 알고리듬을 더욱 발전시켜 경사 횡등방성 이방성까지 고려할 수 있도록 발전시키고자 한다.

Magnetotelluric (MT) survey investigates electrical structure of subsurface by measuring natural electromagnetic fields on the earth surface. For the accurate interpretation of MT data, the precise three-dimensional (3-D) modeling algorithm is prerequisite. Since MT responses are affected by electrical anisotropy of medium, the modeling algorithm has to incorporate the electrical anisotropy especially when analyzing time-lapse MT data sets, for monitoring engineered geothermal system (EGS) reservoir, because changes in different-vintage MT-data sets are small. This study developed a MT modeling algorithm for the simulation MT responses in the presence of electrical anisotropy by improving a pre-existing staggered-grid finite-difference MT modeling algorithm. After verifying the developed algorithm, we analyzed the effect of vertical transversely isotropic (VTI) anisotropy on MT responses. In addition, we are planning to extend the applicability of the developed algorithm which can simulate not only the horizontal transversely isotropic (HTI) anisotropy, but also the tiled transversely isotropic (TTI) anisotropy.

키워드

참고문헌

  1. Bedrosianm, P. A., Weckmann, U., Rittter, O., Hammer, C., Hubert, J., and Jung, A., 2004, Electromagnetic monitoring of the Gross Schonebeck stimulation experiment, proceedings Jahrestagung der Deutschen Geophysikalischen Gessellschaf, 64, 124-130.
  2. Berdichevskii, M. N., Dmitriev, V. I., and Keller, G. V., 2002, Magnetotellurics in the context of the theory of ill-posed problems, No. 11, Society of Exploration Geophysicists Books.
  3. Goldstein, N. E., 1988, Subregional and detailed exploration for geothermal-hydrothermal resources. Gordon and Breach Science Publishers, 1, 303-431.
  4. Han, N. R., Nam, M. J., Kim, H. J., Lee, T. J., Song, Y. H., and Suh, J. H., 2008, Application of Two-Dimensional Boundary Condition to Three-Dimensional Magnetotelluric Modeling, Geophysics and Geophysical Exploration, 11(4), 318-325.
  5. Klein, J. D., Martin, P. R., and Allen, D. F., 1997, The petrophysics of electrically anisotropic reservoirs, The Log Analyst, 38(3), 25-36.
  6. Kim, H. J., Nam, M. J., Song, Y. H., and Suh, J. H., 2004, Review on the Three-dimensional magnetotelluric modeling, Korean Society of Earth and Exploration Geophysicists, 7(2), 148-154.
  7. Lee, C. K., Lee, H. S., Kwon, B. D., Cho, I. K., Oh, S. H., and Lee, T. J., 2007, Electrical anisotropy of the Okchon belt inferred from magnetotelluric data, Journal of the Korean Earth Science Society, 28, 227-239. https://doi.org/10.5467/JKESS.2007.28.2.227
  8. Mann, J. E., 1965, The importance of anisotropic conductivity in magnetotelluric interpretation, Journal of Geophysical Research, 70, 2940-2942. https://doi.org/10.1029/JZ070i012p02940
  9. Martinelli, P., and Osella, A., 1997, MT forward modeling of 3-D anisotropic electrical conductivity structures using the Rayleigh-Fourier method, Journal of geomagnetism and geoelectricity, 49(11-12), 1499-1518. https://doi.org/10.5636/jgg.49.1499
  10. Mendrinos, E., Choropanitis, I., Polyzou, O., and Karytas, C., 2010, Exploring for geothermal resources in Greece, Geothermics, 39(1), 124-137. https://doi.org/10.1016/j.geothermics.2009.11.002
  11. Moran, J. H., and Gianzero, S., 1979, Effects of formation anisotropy on resistivity-logging measurements, Geophysics, 44, pp. 1266-1286. https://doi.org/10.1190/1.1441006
  12. Nam, M. J., Kim, H. J., Song, Y., Lee, T. J., and Suh, J. H., 2008, Three-dimensional topography corrections of magnetotelluric data, Geophysical Journal International, 174(2), 464-474. https://doi.org/10.1111/j.1365-246X.2008.03817.x
  13. Nam, M. J., and Song, Y. H., 2014, A study on magnetotelluricbased 4D imaging of engineered geothermal reservoir, Nov. 17-20, AFORE2014, Yeosu, pp. 179.
  14. Orange, A. A., 1989, Magnetotelluric exploration for hydrocarbons, Proceedings of the IEEE, 77(2), 287-317. https://doi.org/10.1109/5.18627
  15. Park, C. H., Cheon, S. W., Ku, B. J., and Nam, M. J., 2014, A Review and Analysis on Constructing Electrical Resistivity Models for Hydrocarbon Reservoirs Based on the Characteristics of Shale Distribution, Journal of Korean Society Mineral Energy Resource Eng., 51(1), 97-115. https://doi.org/10.12972/ksmer.2014.51.1.97
  16. Peacock, J. R., Thiel, S., Heinson, G. S., and Reid, P., 2013, Time-lapse magnetotelluric monitoring of an enhanced geothermal system, Society of Exploration Geophysicists, 78(3), B121-B130.
  17. Pek, J., and Verner, T., 1997, Finite-difference modelling of magnetotelluric fields in two-dimensional anisotropic media, Geophysical Journal International, 128, 505-521. https://doi.org/10.1111/j.1365-246X.1997.tb05314.x
  18. Pham, V. N., Boyer, D., Therme, P, Yuan, X. C., Li, L., and Jin, G. Y., 1986, Partial melting zones in the crust in southern Tibet from magnetotelluric results, Nature, 319, 310-314. https://doi.org/10.1038/319310a0
  19. Reddy, I. K., and Rankin, D., 1975, Magnetotelluric response of laterally inhomogeneous and anisotropic media, Society of Exploration Geophysicists, 40, 1035-1045.
  20. Sasaki, Y., 1999, Three-dimensional frequency-domain electromagnetic modeling using the finite-difference method, Butsuri Tansa, 52, 421-431.
  21. Slolon, K. D., Jones, A. G., Nelson, K. D., Unsworth, M. J., Kidd, W. F., Wei, W., Tan, H., Jin, S., Deng, M., Booker, J. R., Li, S., and Bedrosian, P., 2005, Structure of the crust in the vicinity of the Banggong-Nujiang suture in central Tibet from INDEPTH magnetotelluric data, Journal of Geophysical Research, 110, B10102. https://doi.org/10.1029/2003JB002405
  22. Tezkan, B., Georgescu, P., and Fauzi, U., 2005, A radiomagnetotelluric survey on an oil-contaminated area near the Brazi Refinery, Romania Geophysical Prospecting, 53, 311-323. https://doi.org/10.1111/j.1365-2478.2005.00475.x
  23. Tikhonov, A. N., 1950, On determining electrical characteristics of the deep layers of the earth's crust, Dokl. Aca. Nauk., USSR, 73, 295-297.
  24. Unsworth, M., Soyer, W., Tuncer, V., Wagner, A., and Barners, D., 2007, Hydrogeologic assessment of the Amchitka Island nuclear test site (Alaska) with magnetotellurics. Geophysics, 72(3), B47-B57. https://doi.org/10.1190/1.2539353
  25. Vozoff, K., 1991, The magnetotelluric method, in Nabighian M. N., Electromagnetic methods in applied geophysics, Society of Exploration Geophysics, 2, 641-711.
  26. Wannamaker, P. E., Hohmann, G. W., and Ward, S. H., 1984, Magnetotelluric responses of three-dimensional bodies in layered earths. Geophysics, 49(9), 1517-1533. https://doi.org/10.1190/1.1441777
  27. Weidelt, P., 1999, 3D conductivity models: implications of electrical anisotropy, Society of Exploration Geophysicists, pp. 119-137.
  28. Zhdanov, M. S., Wan, L., Constable, S., and Key, K., 2004, New development in 3-D marine MT modeling and inversion for off-shore petroleum exploration, SEG Technical Program Expanded Abstracts, pp. 588-591.