References
- S.F. Hsiao et al., "Automatic Generation of High-Performance Multiple-Input XOR/XNOR Circuits and Its Application in Advanced Encryption Standard (AES)," Int. Symp. Next- Generation Electron., Kaohsiung, Taiwan, Nov. 18-19, 2010, pp. 77-80.
- G. Cho et al., "Performance Evaluation of CNFET-Based Logic Gates," Proc. IEEE Int. Instrum. Meas. Technol. Conf., Singapore, May 5-7, 2009, pp. 909-912.
- N. Ahmed and R. Hasan, "A New Design of XOR-XNOR Gates for Low Power Application," Int. Conf. Electron. Dev., Syst. Appl., Kuala Lumpur, Malaysia, Apr. 25-27, 2011, pp. 45-49.
- F. Chowdhury et al., "Novel Single-Device "XOR" AND "AND" Gates for High Speed, Very Low Power LSI Mechanical Processors," 16th Int. Solid-State Sensors, Actuators Microsyst. Conf., Beijing, China, June 5-9, 2011, pp. 1100-1103.
- N. Burgess, "The Flagged Prefix Adder and Its Applications in Integer Arithmetic," J. VLSI Signal Process., vol. 31, no. 3, July 2002, pp. 263-271. https://doi.org/10.1023/A:1015421507166
- H.T. Bui, Y. Wang, and Y. Jiang, "Design and Analysis of Low- Power 10-Transistor Full Adders Using Novel XOR/XNOR Gates," IEEE Trans. Circuits Syst. II: Analog Dig. Signal Process., vol. 49, no. 1, Jan. 2002, pp. 25-30. https://doi.org/10.1109/82.996055
- H. Lee and G.E. Sobelman, "New XOR/XNOR and Full Adder Circuits for Low Voltage, Low Power Applications," Microelectron. J., vol. 29, no. 8, Aug. 1998, pp. 509-517. https://doi.org/10.1016/S0026-2692(97)00120-1
- J.M. Wang, S.C. Fang, and W.S. Feng, "New Efficient Designs for XOR and XNOR Functions on the Transistor Level," IEEE J. Solid-State Circuits, vol. 29, no. 7, July 1994, pp. 780-786. https://doi.org/10.1109/4.303715
- M.H. Moaiyeri et al., "Novel Direct Designs for 3-Input XOR Function for Low-Power and High-Speed Applications," Int. J. Electron., vol. 97, no. 6, Mar. 2010, pp. 647-662. https://doi.org/10.1080/00207211003646944
- A. Reyhani-Masoleh and M. Hasan, "Low Complexity Bit Parallel Architectures for Polynomial Basis Multiplication over GF(2m)," IEEE Trans. Comput., vol. 53, no. 8, Aug. 2004, pp. 945-959. https://doi.org/10.1109/TC.2004.47
- J. Wang et al., "Low Power and High Performance Dynamic CMOS XOR/XNOR Gate Design," Proc. 36th Int. Conf. Micro-, Nano-Eng., vol. 88, no. 8, Aug. 2011, pp. 2781-2784.
- S. Goel, M.A. Elgamel, and M.A. Bayoumi, "Novel Design Methodology for High-Performance XOR-XNOR Circuit Design," Proc. 16th Symp. Integr. Circuits Syst. Des., Sao Paulo, Brazil, Sept. 8-11, 2003, pp. 71-76.
- S. Mishra, A. Agrawal, and R. Nagaria, "A Comparative Performance Analysis of Various CMOS Design Techniques for XOR and XNOR Circuits," Int. J. Emerg. Technol., vol. 1, Feb. 2010, pp. 1-10.
- M.D. Lewis, "114 MFLOPS Logarithmic Number System Arithmetic Unit for DSP Applications," IEEE J. Solid-State Circuits, vol. 30, no. 12, Dec. 1995, pp. 1547-1553. https://doi.org/10.1109/4.482205
- K.E. Zoiros et al., "Theoretical Analysis and Performance Investigation of Ultrafast All-Optical Boolean XOR Gate with Semiconductor Optical Amplifier-Assisted Sagnac Interferometer," Opt. Commun., vol. 258, no. 2, Feb. 2006, pp. 114-134. https://doi.org/10.1016/j.optcom.2005.07.059
- J.H. Kim et al., "All-Optical XOR Gate Using Semiconductor Optical Amplifiers without Additional Input Beam," IEEE Photonics Technol. Lett., vol. 14, no. 10, Oct. 2002, pp. 1436- 1438. https://doi.org/10.1109/LPT.2002.801841
- S. Lin, Y.B. Kim, and F. Lombardi, "A Novel CNTFET-Based Ternary Logic Gate Design," 52nd IEEE Int. Midwest Symp. Circuits Syst., Cancun, Mexico, Aug. 2-5, 2009, pp. 435-438.
- S. Lin et al., "A New SRAM Cell Design Using CNTFETs," Int. SoC Design Conf., vol. 1, Busan, South Korea, Nov. 24-25, 2008, pp. 168-171.
- A. Raychowdhury and K. Roy, "Carbon Nanotube Electronics: Design of High-Performance and Low-Power Digital Circuits," IEEE Trans. Circuits Syst I, Reg. Papers, vol. 54, no. 11, Nov. 2007, pp. 2391-2401. https://doi.org/10.1109/TCSI.2007.907799
- Y.B. Kim, "Challenges for Nanoscale MOSFETs and Emerging Nanoelectronics," Trans. Electr. Electron. Mater., vol. 11, no. 3, June 2010, pp. 93-105. https://doi.org/10.4313/TEEM.2010.11.3.093
- M.H. Moaiyeri, K. Navi, and O. Hashemipour, "Design and Evaluation of CNFET-Based Quaternary Circuits," Circuits, Syst., Signal Process., vol. 31, no. 5, Oct. 2012, pp. 1631-1652. https://doi.org/10.1007/s00034-012-9413-2
- M.H. Moaiyeri et al., "Design and Analysis of a High- Performance CNFET-Based Full Adder," Int. J. Electron., vol. 99, no. 1, no. 1, Oct. 2012, pp. 113-130. https://doi.org/10.1080/00207217.2011.623269
- M.H. Moaiyeri et al., "High-Performance Mixed-Mode Universal Min-Max Circuits for Nanotechnology," Circuits, Syst., Signal Process., vol. 31, no. 2, Apr. 2012, pp. 465-488. https://doi.org/10.1007/s00034-011-9344-3
- M.H. Moaiyeri et al., "Efficient CNTFET-Based Ternary Full Adder Cells for Nanoelectronics," Nano-Micro Lett., vol. 3, no. 1, Apr. 2011, pp. 43-50. https://doi.org/10.1007/BF03353650
- M. Ghasemi et al., "A New SPICE Model for Organic Molecular Transistors and a Novel Hybrid Architecture," IEICE Electron. Exp., vol. 9, no. 10, May 2012, pp. 926-931. https://doi.org/10.1587/elex.9.926
- N. Patil et al., "Scalable Carbon Nanotube Computational and Storage Circuits Immune to Metallic and Mispositioned Carbon Nanotubes," IEEE Trans. Nanotechnol., vol. 10, no. 4, July 2011, pp.744-750. https://doi.org/10.1109/TNANO.2010.2076323
- M.R. Reshadinezhad, M.H. Moaiyeri, and K. Navi, "An Energy- Efficient Full Adder Cell Using CNFET Technology," IEICE Trans. Electron., vol. E95-C, no. 4, Apr. 2012, pp. 744-751. https://doi.org/10.1587/transele.E95.C.744
- S. Lin, Y. Kim, and F. Lombardi, "CNTFET-Based Design of Ternary Logic Gates and Arithmetic Circuits," IEEE Trans. Nanotechnol., vol. 10, no. 2, Mar. 2011, pp. 217-225. https://doi.org/10.1109/TNANO.2009.2036845
- M. Jamaa et al., "Programmable Logic Circuits Based on Ambipolar CNFET," Proc. 45th Annu. Des. Autom. Conf., Anaheim, CA, USA, June 8-13, 2008, pp. 339-340.
- J. Deng, Device Modeling and Circuit Performance Evaluation for Nanoscale Devices: Silicon Technology beyond 45 nm Node and Carbon Nanotube Field Effect Transistors, doctoral dissertation, Stanford University, 2007.
- H. Shahidipour, A. Ahmadi, and K. Maharatna, "Effect of Variability in SWCNT-Based Logic Gates," Proc. 12th Int. Symp. Integr. Circuits, Singapore, Dec. 14-16, 2009, pp. 252-255.
- Y. Kim and F. Lombardi, "A Novel Design Methodology to Optimize the Speed and Power of the CNTFET Circuits," 52nd IEEE Int. Midwest Symp. Circuits Syst., Cancun, Mexico, Aug. 2-5, 2009, pp. 1130-1133.
- J. Deng and H. Wong, "A Compact SPICE Model for Carbon- Nanotube Field-Effect Transistors including Nonidealities and Its Application -Part I: Model of the Intrinsic Channel Region," IEEE Trans. Electron Devices, vol. 54, no. 12, Dec. 2007, pp. 3186-3194. https://doi.org/10.1109/TED.2007.909030
- J. Deng and H. Wong, "A Compact SPICE Model for Carbon- Nanotube Field-Effect Transistors including Nonidealities and its Application -Part II: Full Device Model and Circuit Performance Benchmarking," IEEE Trans. Electron Devices, vol. 54, no. 12, Dec. 2007, pp. 3195-3205. https://doi.org/10.1109/TED.2007.909043
- A. Lin et al., "Threshold Voltage and On-Off Ratio Tuning for Multiple-Tube Carbon Nanotube FETs," IEEE Trans. Nanotechnol., vol. 8, no. 1, Jan. 2009, pp. 4-9. https://doi.org/10.1109/TNANO.2008.2004706
- P. McEuen, M.S. Fuhrer, and H. Park, "Single-Walled Carbon Nanotube Electronics," IEEE Trans. Nanotechnol., vol. 1, no. 1, Mar. 2002, pp. 78-85. https://doi.org/10.1109/TNANO.2002.1005429
- G. Cho, Y. Kim, and F. Lombardi, "Assessment of CNTFET Based Circuit Performance and Robustness to PVT Variations," 52nd IEEE Int. Midwest Symp. Circuits Syst., Cancun, Mexico, Aug. 2-5, 2009, pp. 1106-1109.
Cited by
- A new twelve-transistor approximate 4:2 compressor in CNTFET technology vol.106, pp.5, 2014, https://doi.org/10.1080/00207217.2018.1545930
- An Analogue Multiplier using CNTFET Technology vol.19, pp.None, 2014, https://doi.org/10.37394/23204.2020.19.8