DOI QR코드

DOI QR Code

Improvement in Plume Dispersion Formulas for Stack Emissions Using Ground-based Imaging-DOAS Data

  • Lee, Hanlim (Department of Spatial Information Engineering, Pukyong National University) ;
  • Ryu, Jaeyong (Department of Urban Environmental Engineering, Kyungnam University) ;
  • Jeong, Ukkyo (Department of Atmospheric Sciences, Yonsei University) ;
  • Noh, Youngmin (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Shin, Sung Kyun (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Hong, Hyunkee (Department of Spatial Information Engineering, Pukyong National University) ;
  • Kwon, Soonchul (School of Civil and Environmental Engineering, Georgia Institute of Technology)
  • Received : 2014.07.14
  • Accepted : 2014.08.01
  • Published : 2014.12.20

Abstract

This study introduces a new method of combining Imaging Differential Optical Absorption Spectroscopy (Imaging-DOAS) data and plume dispersion formulas for power plant emissions to determine the three-dimensional structure of a dispersing pollution plume and the spatial distributions of trace gas volume mixing ratios (VMRs) under conditions of negligible water droplet and aerosol effects on radiative transfer within the plume. This novel remote-sensing method, applied to a power plant stack plume, was used to calculate the two-dimensional distributions of sulfur dioxide ($SO_2$) and nitrogen dioxide ($NO_2$) VMRs in stack emissions for the first time. High $SO_2$ VMRs were observed only near the emission source, whereas high $NO_2$ VMRs were observed at locations several hundreds of meters away from the initial emission. The results of this study demonstrate the capability of this new method as a tool for estimating plume dimensions and trace gas VMRs in power plant emissions.

Keywords

References

  1. Benkovitz, C. M.; Scholtz, M. T.; Pacyna, J.; Tarrason, L.; Dignon, J.; Voldner, E. C.; Spiro, P. A.; Logan, J. A.; Graedel, T. E. J. Geophys. Res. 1996, 101(D22), 229-239.
  2. Dignon, J. Atmos. Environ. 1992, 26A, 1157-1163.
  3. Holland, E. A.; Dentener, F. J.; Braswell, B. H.; Sulzman, J. M. Biogeochemistry 1999, 46, 7-43.
  4. Agency, U. E. P. National Air Quality and Emissions Trends Report 1997, 1998.
  5. Sandsten, J.; Edner, H.; Svanberg, S. Optics Lett. 1996, 21, 1945-1947. https://doi.org/10.1364/OL.21.001945
  6. Scanning Infrared Remote Sensing System for Identification, Visualization, and Quantification of Airborne Pollutants, Instrumentation for Air Pollution and Global Atmospheric Monitoring; Harig, R., Matz, G., Rusch, P., Eds., 2001; Vol. 4574.
  7. Love, S. P.; Goff, F.; Schmidt, S. C.; Counce, D.; Pettit, D.; Christenson, B. W.; Siebe, C. Geophys. Monogr. 2000, 116, 117-138.
  8. Verma, S. K.; Deb, M. K.; Verma, D. Atmos. Res. 2008, 90, 33-40. https://doi.org/10.1016/j.atmosres.2008.03.022
  9. Lohberger, F.; Honninger, G.; Platt, U. Appl. Opt. 2004, 43, 4711-4717. https://doi.org/10.1364/AO.43.004711
  10. Bobrowski, N.; Honninger, G.; Galle, B.; Platt, U. Nature 2003, 423, 273-276. https://doi.org/10.1038/nature01625
  11. Bobrowski, N.; Honninger, G.; Lohberger, F.; Platt, U. J. Volcanol. Geoth. Res. 2006, 150, 329-338. https://doi.org/10.1016/j.jvolgeores.2005.05.004
  12. Bobrowski, N.; von Glasow, R.; Aiuppa, A.; Inguaggiato, S.; Louban, I.; Ibrahim, O. W.; Platt, U. J. Geophys. Res. 2007, 112, D06311.
  13. Heue, K. P.; Wagner, T.; Broccardo, S. P.; Walter, D.; Piketh, S. J.; Ross, K. E.; Beirle, S.; Platt, U. Atmos. Chem. Phys. 2008, 8, 6707-6717. https://doi.org/10.5194/acp-8-6707-2008
  14. Lee, H.; Kim, Y. J.; Jung, J.; Lee, C.; Heue, K. P.; Platt, U.; Hu, M.; Zhu, T. J. Environ. Mgt. 2009, 90, 1814-1823. https://doi.org/10.1016/j.jenvman.2008.11.025
  15. Louban, I.; Bobrowski, N.; Rouwet, D.; Inguaggiato, S.; Platt, U. B. Vol. 2009, 71, 753-765. https://doi.org/10.1007/s00445-008-0262-6
  16. Pikelnaya, O.; Flynn, J. H.; Tsai, C. J. Geophys. Res. 2013, 118, 8716-8728.
  17. Lee, H.; Kim, Y. J.; Lee, C. Environ. Monit. Assess. 2009, 152, 61-70. https://doi.org/10.1007/s10661-008-0296-4
  18. Lee, H. L.; Noh, Y. M.; Kwon, S. C.; Hong, H. K.; Han, K. S. Bull. Korean Chem. Soc. 2014, 35, 1191-1194. https://doi.org/10.5012/bkcs.2014.35.4.1191
  19. Van Roozendael, M.; Fayt, C. Uccle, IASB/BIRA, 2001.
  20. Platt, U.; Stutz, S. Differential Optical Absorption Spectroscopy: Principles and Applications; Verlag Berlin Heidelberg, 2008.
  21. Briggs, C. A. Atmos. Environ. 1972, 6, 507-510. https://doi.org/10.1016/0004-6981(72)90120-5
  22. Hanna, S. R.; Briggs, G. A.; P., H. J. R. Handbook on Atmospheric Diffusion; Department of Energy, 1982.
  23. Mamane, Y.; Pueschel, R. F. Atmos. Environ. 1980, 14, 629-639. https://doi.org/10.1016/0004-6981(80)90045-1
  24. Lee, H. L.; Gu, M.; Kim, Y. J.; Hwang, J.; Jung, U. Atmos. Environ. 2012, 54, 519-528. https://doi.org/10.1016/j.atmosenv.2012.02.065

Cited by

  1. The AOTF-based NO<sub>2</sub> camera vol.9, pp.12, 2016, https://doi.org/10.5194/amt-9-6025-2016