DOI QR코드

DOI QR Code

Underwater Acoustic Communication of FH-MFSK Method with Multiple Orthogonal Properties

다중 직교 특성을 갖는 FH-MFSK 방식의 수중음향통신

  • Received : 2014.06.27
  • Accepted : 2014.08.29
  • Published : 2014.11.30

Abstract

In this paper, we propose an underwater acoustic communication of FH-MFSK(Frequency-Hopped Multiple Frequency Shift Keying) system with multiple orthogonal property. Generally, the processing of FSK(Frequency Shift Keying) method is simple, but it is vulnerable to ISI (Inter-Symbol Interference) caused by multipath transmission. In this paper, the orthogonal codes are generated with the same number of transmitting symbols, and these codes are corresponding to multiple frequencies. We used m-sequence to generate multiple orthogonal codes. We compared the performance of proposed method with conventional MFSK method via the experiment. As a result, we confirmed that the proposed method shows 6~10 % lower error rate at 100 bps than conventional method.

본 논문에서는 다중 직교 특성을 갖는 FH-MFSK(Frequency-Hopped Multiple Frequency Shift Keying) 방식의 수중음향통신을 제안한다. 일반적으로 FSK(Frequency Shift Keying) 방식은 처리 과정이 단순하지만 다중 경로 전달로 인해 발생하는 인접 심볼간 간섭에 취약하다. 본 논문에서는 전송하고자 하는 심볼 수와 동일한 서로 직교 성질을 갖는 코드들을 생성한다. 이 코드 값들은 각각 다수의 주파수들에 대응된다. 이러한 다중 직교 코드를 생성하기 위해 m-sequence를 이용하였다. 실험을 통해 제안된 방법의 성능을 기존의 MFSK 방식과 비교하였다. 100 bps 전송율에서 제안한 방법은 기존의 방법보다 오차율이 6 ~ 10 % 낮게 나타났다.

Keywords

References

  1. D. B. Kilfoyle and A. B. Baggeroer, "The state of art in underwater acoustic telemetry," IEEE J. Oceanic Eng. 25, 4-27 (2000). https://doi.org/10.1109/48.820733
  2. Y. C. Choi and Y. K. Rim, "A broadband FIR beamformer for underwater acoustic communications" (in Korean), J. Korea Inst. Inform. Comm. Eng. 10, 2151-2156 (2006).
  3. R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to Spread-Spectrum Communications (Prentice Hall, New Jersey, 1995), pp. 47-83.
  4. J. W. Han, K. M. Kim, Y. J. Youn, H. W. Moon, S. Y. Chun, and K. Son, "Sea trial results of the direct sequence spread spectrum underwater acoustic communication in the east sea" (in Korean), J. Acoust. Soc. Kr. 31, 441-448 (2012). https://doi.org/10.7776/ASK.2012.31.7.441
  5. J. H. Jeon and S. J. Park, "Design and implementation of an acoustic modem for small underwater devices operating at shallow water" (in Korean), J. Inst. Elec. Inform. Eng. 49, 110-117 (2012). https://doi.org/10.5573/ieek.2012.49.11.110
  6. K. C. Park, J. Park, S. W. Lee, J. W. Jung, J. Shin, and J. R. Yoon, "Performance evaluation of underwater acoustic communication in frequency selective shallow water" (in Korean), J. Acoust. Soc. Kr. 32, 95-103 (2013). https://doi.org/10.7776/ASK.2013.32.2.095
  7. Y. W. Choi, Y. C. Lim, J. K. Shin, M. K. Kim, D. C. Park, and S. C. Kim, "Low power underwater acoustic communication using orthogonal codes" (in Korean), Proc. Underwater Robot, 45-48 (2014).
  8. E. Gallimore, J. Partan, I. Vaughn, S. Singh, J. Shusta, and L. Freitag, "The WHOI micromodem-2 : a scalable system for acoustic communications and networking," Proc. IEEE/MTS Oceans Conf. 1-7 (2010).
  9. L. Freitag, FH-FSK coding and modulation specification, WHOI report, 6-10 (2005).
  10. L. Frietag, M Stojanovic, S. Singh, and M. Johnson, "Analysis of direct-sequence and frequency-hopped spread spectrum acoustic communication," IEEE J. Oceanic Eng. 26, 586-593 (2001). https://doi.org/10.1109/48.972098
  11. W. B. Yang and T. C. Yang, "High-frequency FH-FSK underwater acoustic communications : the environmental effect and signal processing," in Proc. High Freq. Ocean Acoust. Conf. 728, 106-113 (2004).
  12. D. Green, "Underwater acoustic communication and modembased navigation aids," in Proc. EUC workshops, 474-481 (2007).

Cited by

  1. Receiver design for differential phase-shift keying underwater acoustic communication vol.35, pp.5, 2016, https://doi.org/10.7776/ASK.2016.35.5.368