DOI QR코드

DOI QR Code

Association between Low Density Lipoprotein Cholesterol and Pulmonary Function among Premenopausal women in their 40s: a Retrospective Cohort study

40대 폐경 전 여성에서 저밀도 지단백 콜레스테롤과 폐 기능의 연관성: 후향적 코호트 연구

  • Ko, Hae-Jin (Department of Family Medicine, Kyungpook National Univertisy Hospital, Kyungpook National Univertisy School of Medicine) ;
  • Youn, Chang-Ho (Department of Family Medicine, Kyungpook National Univertisy Hospital, Kyungpook National Univertisy School of Medicine) ;
  • Kim, Seong-Hyun (Division of Applied Entomology, National Academy of Agricultural Science, Rural Development Administration)
  • 고혜진 (경북대학교 의학전문대학원 경북대학교병원 가정의학과) ;
  • 윤창호 (경북대학교 의학전문대학원 경북대학교병원 가정의학과) ;
  • 김성현 (농촌진흥청 국립농업과학원 농업생물부 곤충산업과)
  • Received : 2014.07.14
  • Accepted : 2014.11.06
  • Published : 2014.11.30

Abstract

The aim of this study was to identify the correlation between low density lipoprotein (LDL) cholesterol and the pulmonary function. This study enrolled premenopausal women in their aged 40s, who visited the health promotion center of a general hospital more than two times. A total of 384 subjects were classified into four groups based on their LDL-cholesterol levels; A, LDL(mg/dL)<100 at both initial and follow-up; B, LDL<100 at initial but ${\geq}100$ at follow-up; C, $LDL{\geq}100$ at initial but <100 on follow-up; and D, $LDL{\geq}100$ at both the initial and follow-up test. The result showed no significant differences in the pulmonary function between the four groups. Multiple linear regression analysis, which was adjusted for age, body mass index, smoking, exercise, and follow-up duration, showed a significant negative relationship between the changes in the LDL and the changes in the $FEV_1/FVC$ (${\beta}=-0.109$, S.E.=0.029, P<0.001), but not in the $FEV_1$ and FVC. In conclusion, there was a significant but weak relationship between the LDL and pulmonary function. Further larger studies will be needed.

저밀도 지단백과 폐 기능과의 상관관계를 살펴보고자 2001년 1월부터 2011년 12월까지 일개지역 대학병원의 건강증진 센터를 방문하여 2회 이상 검사를 시행한 40-49세의 폐경 전 여성을 대상으로 연구하였다. 최종 384명의 대상자를 LDL(mg/dL)을 기준으로 초기와 추적검사에서 모두 100미만인 A군, 초기 검사에서는 100미만이었으나 추적검사에서 100이상인 B군, 초기 검사에서는 100이상이었으나 추적검사에서 100미만인 C군, 초기와 추적검사 모두에서 100이상인 D군으로 나누었다. 네 군간 폐 기능 검사는 초기, 추적검사 모두 통계적으로 유의한 차이를 보이지 않았다. 나이, 체질량지수, 흡연, 운동, 추적기간을 보정하여 LDL 변화량과 폐 기능 변화량에 대해 다중회귀분석을 시행한 결과 $FEV_1/FVC$/FVC에 대해 유의한 음의 상관관계가 나타났고(${\beta}=-0.109$, S.E.=0.029, P<0.001), 그 외에는 유의한 결과를 보이지 않았다. 결론적으로 LDL과 폐기능 변화량은 음의 상관관계가 있으며, 향후 대규모의 연구가 필요하다.

Keywords

References

  1. G. L. Vega. Results of experts meetings: obesity and cardiovascular disease. Obesity, the metabolic syndrome, and cardiovascular disease. Am Heart J. 142(6), p.1108-1116, 2001. DOI: http://dx.doi.org/10.1067/mhj.2001.119790
  2. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 285(19), p.2486-2497, 2001. DOI: http://dx.doi.org/10.1001/jama.285.19.2486
  3. T. W. Yoo. Health yearbook. p.281-292, Seoul Bokuennews, 2000.
  4. H. M. Kim, D. J. Kim, I. H. Jung, C. Park, J. Park. Prevalence of the metabolic syndrome among Korean adults using the new international diabetes federation definition and the new abdominal obesity criteria for the Korean people. Diabetes Res Clin Pract. 77, p.99-106, 2007 DOI: http://dx.doi.org/10.1016/j.diabres.2006.10.009
  5. D. D. Sin, L. Wu, S. F. Man. The relationship between reduced lung function and cardiovascular mortality: a population-based study and a systematic review of the literature. Chest. 127(6), 1952-1959, 2005. DOI: http://dx.doi.org/10.1378/chest.127.6.1952
  6. M. Dahl, A. Tybjaerg-Hansen, J. Vestbo, P. Lange, B. G. Nordestgaard. Elevated plasma fibrinogen associated with reduced pulmonary function and increased risk of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 164(6), p.1008-1011, 2001. DOI: http://dx.doi.org/10.1164/ajrccm.164.6.2010067
  7. W. Jedrychowski, U. Maugeri, K. Gomola. B. Tobiasz-Adamczyk. Ventilatory lung function level as a predictor of survival among the elderly. Monaldi Arch Chest Dis. 49(4), p.293-297, 1994.
  8. J. H. Chung, H. J. Hwang, C. H. Han, B. S. Son, D. H. Kim, M. S. Park. Association between Sarcopenia and Metabolic Syndrome in Chronic Obstructive Pulmonary Disease: The Korea National Health and Nutrition Examination Survey (KNHANES) from 2008 to 2011. COPD. 2014 Jun 10. [Epub ahead of print] DOI: http://dx.doi.org/10.3109/15412555.2014.908835
  9. F. Yeh, A. E. Dixon, L. G. Best, S. M. Marion, E. T. Lee, T. Ali, J. Yeh, E. R. Rhoades, B. V. Howard, R. B. Devereux. Lung function and heart disease in American Indian adults with high frequency of metabolic abnormalities (from the Strong Heart Study). Am J Cardiol. 114(2), p.312-319, 2014. DOI: http://dx.doi.org/10.1016/j.amjcard.2014.04.042
  10. Y. Yamamoto, J. Oya, T. Nakagami, Y. Uchigata. Association between lung function and metabolic syndrome independent of insulin in Japanese men and women. Jpn Clin Med. 5, p.1-8, 2014. DOI: http://dx.doi.org/10.1111/dme.12346
  11. D. Yu, D. Simmons. Association between lung capacity measurements and abnormal glucose metabolism: findings from the Crossroads study. Diabet Med. 31(5), p.595-599. 2014. https://doi.org/10.1111/dme.12346
  12. M. Behnes, M. Brueckmann, V. Liebe, C. Liebetrau, S. Lang, C. Putensen, M. Borggrefe, U. Hoffmann. Levels of oxidized low-density lipoproteins are increased in patients with severe sepsis. J Crit Care. 23(4), p.537-541, 2008. DOI: http://dx.doi.org/10.1016/j.jcrc.2008.09.002
  13. W. Jin, Y. Zhao, W. Yan, L. Cao, W. Zhang, M. Wang, T. Zhang, Q. Fu, Z. Li. Elevated circulating interleukin-27 in patients with coronary artery disease is associated with dendritic cells, oxidized low-density lipoprotein, and severity of coronary artery stenosis. Mediators Inflamm. 2012, p.10, 2012. DOI: http://dx.doi.org/10.1155/2012/506283
  14. J. B. Sedgwick, Y. S. Hwang, H. A. Gerbyshak, H. Kita, W. W. Oxidized low-density lipoprotein activates migration and degranulation of human granulocytes. Am J Respir Cell Mol Biol. 29(6), p.702-709, 2003. DOI: http://dx.doi.org/10.1165/rcmb.2002-0257OC
  15. V. N. Bochkov, N. W. Leitinger. Anti-inflammatory properties of lipid oxidation products. J Mol Med (Berl). 81(10), p.613-26, 2003. DOI: http://dx.doi.org/10.1007/s00109-003-0467-2
  16. H. Santana, E. Zoico, E. Turcato, P. Tosoni, L. Bissoli, M. Olivieri, O. Bosello, M. Zamboni. Relation between body composition, fat distribution, and lung function in elderly men. Am J Clin Nutr. 73(4), p.827-331, 2001. https://doi.org/10.1093/ajcn/73.4.827
  17. W. G. Kuschner, A. D'Alessandro, H. Wong, P. D. Blanc. Dose dependent cigarette smoking-related inflammatory responses in healthy adults. Eur Respir J. 9(10), p.1989-94, 1996. DOI: http://dx.doi.org/10.1183/09031936.96.09101989
  18. P. Maestrelli, M. Saetta, C. E. Mapp, L. M. Fabbri. Remodeling in response to infection and injury. Airway inflammation and hypersecretion of mucus in smoking subjects with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 164(10 Pt 2), p.S76-80, 2001. DOI: http://dx.doi.org/10.1164/ajrccm.164.supplement_ 2.2106067
  19. N. P. Kadoglou, G. Fotiadis, Z. Athanasiadou, I. Vitta, S. Lampropoulos, I. S. Vrabas. The effects of resistance training on ApoB/ApoA-I ratio, Lp(a) and inflammatory markers in patients with type 2 diabetes. Endocrine. 42(3), p.561-569, 2012. DOI: http://dx.doi.org/10.1007/s12020-012-9650-y
  20. F. S. Lira FS, J. C. Rosa, G. D. Pimentel, V. A. Tarini, R. M. Arida, F. Faloppa, E. S. Alves, C. O. do Nascimento, L. M. Oyama, M. Seelaender, M. T. de Mello, R. V. Santos. Inflammation and adipose tissue: effects of progressive load training in rats. Lipids Health Dis. 9, p.109, 2010. https://doi.org/10.1186/1476-511X-9-109
  21. R. Lazarus, C. J. Gore, M. Booth, N. Owen. Effects of body composition and fat distribution on ventilatory function in adults. Am J Clin Nutr. 68(1), p.35-41, 1998. https://doi.org/10.1093/ajcn/68.1.35
  22. J. B. Schoenberg, G. J. Beck, A. Bouhuys. Growth and decay of pulmonary function in healthy blacks and whites. Respir Physiol. 33(3), p.367-393, 1978. DOI: http://dx.doi.org/10.1016/0034-5687(78)90063-4
  23. D. M. Mannino, E. S. Ford, S. C. Redd. Obstructive and restrictive lung disease and functional limitation: data from the Third National Health and Nutrition Examination. J Intern Med. 254(6), 540-547, 2003. DOI: http://dx.doi.org/10.1111/j.1365-2796.2003.01211.x
  24. D. D. Sin, S. F. Man. Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases. The potential role of systemic inflammation in chronic obstructive pulmonary disease. Circulation. 107(11), p.1514-1519, 2003. DOI: http://dx.doi.org/10.1161/01.CIR.0000056767.69054.B3
  25. Yong Il Hwang, Young Chul Kim, Jae Ho Lee, Min Jong Kang, Dong Gyu Kim. Symptom Questionnaire and Laboratory Findings in Subjects with Airflow Limitation: a Nation-wide Survey. Tuberc Respir Dis. 63, p.480-485, 2007. DOI: http://dx.doi.org/10.4046/trd.2007.63.6.480
  26. A. De Lorenzo, C. Maiolo, E. I. Mohamed, A. Andreoli, P. Petrone-De Luca, P. Rossi. Body composition analysis and changes in airways function in obese adults after hypocaloric diet. Chest. 119, p.1409-1415, 2001. DOI: http://dx.doi.org/10.1378/chest.119.5.1409
  27. M. Ohkita, M. Tawa, K. Kitada, Y. Matsumura. Pathophysiological Roles of Endothelin Receptors in Cardiovascular Diseases. J Pharmacol Sci. 119(4), p.302-313, 2012. DOI: http://dx.doi.org/10.1254/jphs.12R01CR