DOI QR코드

DOI QR Code

Phase Image of Susceptibility Weighted Image Using High Pass Filter Improved Uniformity

위상영상 획득 시 영상의 균일도 향상을 위한 high pass filter의 적용

  • Lee, Ho-Beom (Department of Radiology, Asan Medical Center) ;
  • Choi, Kwan-Woo (Department of Radiology, Asan Medical Center) ;
  • Son, Soon-Yong (Department of Radiology, Asan Medical Center) ;
  • Na, Sa-Ra (Department of Radiology, Asan Medical Center) ;
  • Lee, Joo-Ah (Department of Radiation Oncology, Catholic University, Incheon St.Mary's Hospital) ;
  • Min, Jung-Whan (Department of Radiology, Shin-Gu University) ;
  • Kim, Hyun-Soo (Department of Radiology, Shin-Gu University) ;
  • Ma, Sang-Chull (Department of Radiologic Science, Shin han University) ;
  • Jeong, Yeon-Jae (Department of Rehabilitation Medicine, Hanyang University Medical Center) ;
  • Jeong, Yeon-Gyu (Department of Rehabilitation Medicine, Dongguk University Ilsan Medical Center) ;
  • Yoo, Beong-Gyu (Department of Radiotechnology, Wonkwang Health Science University) ;
  • Lee, Jong-Seok (Department of Radiotechnology, Wonkwang Health Science University)
  • 이호범 (서울아산병원 영상의학과) ;
  • 최관우 (서울아산병원 영상의학과) ;
  • 손순룡 (서울아산병원 영상의학과) ;
  • 나사라 (서울아산병원 영상의학과) ;
  • 이주아 (가톨릭대학교인천성모병원 방사선종양학과) ;
  • 민정환 (신구대학교 방사선과) ;
  • 김현수 (신구대학교 방사선과) ;
  • 마상철 (신한대학교 방사선학과) ;
  • 정연재 (서울한양대학교병원 재활의학과) ;
  • 정연규 (동국대학교일산병원 재활의학과) ;
  • 유병규 (원광보건대학교 방사선과) ;
  • 이종석 (원광보건대학교 방사선과)
  • Received : 2014.07.22
  • Accepted : 2014.11.06
  • Published : 2014.11.30

Abstract

In this study, a susceptibility weighted image (SWI) showed a wrapped phase and a non-uniformity of the rapid susceptibility difference. Consequently, the bandwidth limits at low frequency were improved by applying HPF. From November 2013 to March 2014, a three-dimensional SWI was obtained from patients and compared with the existing images and HPF phase images. The maximum and minimum signal intensity differences and non-uniformity were analyzed. As a result, a high pass filter before and after applying the maximum and minimum of the signal intensity difference was decreased by 274.16% (498.98), and the non-uniformity was decreased by 439.55% (19.83). After applying the HPF, a comparison with the existing phase images revealed the HPF phase images to have high signal and image uniformity of the SWI image. A high pass filter method can effectively remove the non-uniformity and improve the overall image quality.

본 연구는 3차원 자화강조영상 획득 시 재구성되는 위상영상의 겹쳐진 위상과 현격한 자화율 차이에 의한 영상의 불균일성을, 낮은 주파수 대역폭을 제한하는 High Pass Filter(HPF)를 적용함으로써 개선하고자 하였다. 연구방법은 2013년 11월부터 2014년 3월까지 3차원 자화강조영상 검사를 받은 환자를 대상으로 high pass filter의 적용 전후 영상 간 차이를 확인하기 위하여 기존의 위상영상과 HPF를 적용한 새로운 위상영상의 최대, 최소 신호강도 차이 및 불균일도를 비교 분석하였다. 연구결과, HPF 적용 전후에 따른 최대, 최소 신호강도의 차이는 274.16%(498.98), 불균일도는 439.55%(19.83) 감소하였다. 이는 HPF를 적용하여 낮은 주파수를 차단한 새로운 위상영상이 기존의 위상영상에 비해 겹쳐진 위상신호를 효과적으로 제거하여 영상의 균일도가 높아졌음을 의미한다. 결론적으로 3차원 자화강조영상 획득 시 재구성되는 위상영상에 HPF를 적용하면 겹쳐진 위상과 현격한 자화율 차이에 의한 영상의 불균일성을 효과적으로 개선할 수 있어 영상의 질을 크게 개선할 수 있다.

Keywords

References

  1. Kidwell C, Saver J, Villablance P, Duckwiler G, Fredieu A,Gough K, "Magnetic Resonance Imaging detection of microbleeds before thrombolysis: An Emerging Application", Stroke Vol.33, no.1, pp.95-98, 2002. DOI: http://dx.doi.org/10.1161/hs0102.101792
  2. Motto C, Ciccone A, Aritzu E, Boccardi E, De Grandi C, Piana A, Candelise L, "Hemorrhage after an acute ischemic stroke. MAST-I Collaborative Group", Stroke, Vol.30, no.4, pp.761-764, 1999. DOI: http://dx.doi.org/10.1161/01.STR.30.4.761
  3. "The NINDS t-PA Stroke Study Group. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke", Stroke Vol. 28, no.11, pp.2109-2118, 1997. DOI: http://dx.doi.org/10.1161/01.STR.28.11.2109
  4. Larrue V, von Kummer R, del Zoppo G, Blumki E, "Hemorrhagic transformation in acute ischemic stroke. Potential contributing factors in the European Cooperative Acute Stroke Study", Stroke Vol. 28, no. 5, pp.957-960, 1997. DOI: http://dx.doi.org/10.1161/01.STR.28.5.957
  5. Jeerakathi T, Wolf P, Beiser A, John K, Au R, Kase CS, "Cerebral microbleeds: prevalence and associations with cardiovascularrisk factors in the Framingham study", Stroke, Vol. 35, no. 8, pp.1831-1835 , 2004. DOI: http://dx.doi.org/10.1161/01.STR.0000131809.35202.1b
  6. Fazekas F, Kleinert R, Roob G, Kleinert G, Kapeller P, Schmidt R. "Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds", AJNR Am J Neuroradiol, Vol. 20, no. 4, pp: 637-642, 1999.
  7. Chan S, Kartha K, Yoon SS, Desmond DW, Hilal SK. "Multifocal hypointense cerebral lesions on gradient-echo MR are associated with chronic hypertention", AJNR Am J Neuroradiol ,Vol. 17, no. 10, pp.1821-1827, 1996.
  8. Enomoto K, Watabe T, Amanuma M, Heshiki A,"Magnetization transfer MR of cerebrovascular disorders using calculated images", Nippon Igaku Hoshasen Gakkai Zasshi ,Vol. 57, no. 7, pp.402-406, 1997.
  9. Beauchanmp HM, Ditchfield M, Babl FE, Kean M, Catroppa C, Yeates KO, Anderson Y, "Detecting traumatic brain lesions in children: CT versus MRI versus susceptibility weighted imaging(SWI)", J Neurotrauma, Vol. 28, no. 6, pp.915-927, 2011. DOI: http://dx.doi.org/10.1089/neu.2010.1712
  10. Filippi M, Rocca MA. "MR imaging of multiple sclerosis", Radiology, Vol. 259, no. 3, pp.659-681, 2011. DOI: http://dx.doi.org/10.1148/radiol.11101362
  11. Thomas B, Somasundaram S, Thamburaj K, Kesavadas C, Gupta AK, Boodhey NK, Kapilamoorthy TR "Clinical applications of susceptibility weighted MR imaging of the brain - a pictorial review", Neuroradiology Vol. 50, no. 2, pp.105-116, 2008. DOI: http://dx.doi.org/10.1007/s00234-007-0316-z
  12. Haacke EM, Xu Y, Cheng YC, Reichenbach JR,"Susceptibility weighted imaging (SWI)", Magn Reson Med, Vol. 52, no. 3, pp.612-618, 2004. DOI: http://dx.doi.org/10.1002/mrm.20198
  13. S.H. Oh, T.S. Park, J.Y. Han, S.Y. Lee, " Magnetic resonance imaging of a current density component", J. of Biomed. Eng. Res. vol. 25, no. 3, pp. 183-188, 2004. DOI: http://dx.doi.org/10.1002/jbm.b.30002
  14. S.J Eun, T.K Whangbo, "Effective Gray-white Matter Segmentation Method based on Physical Contrast Enhancement in an MR Brain Images", Journal of digital contents society , Vol. 14, no.2, pp.275-282, 2013. DOI: http://dx.doi.org/10.9728/dcs.2013.14.2.275
  15. Rauscher A, Sedlacik J, Barth M, Mentzel HJ, Reichenbach JR, " Magnetic susceptibility-weighted MR Phase Imaging of the human brain", AJNR Am J Neuroradiol, Vol. 26, no. 4, pp.736-742, 2005.
  16. Ghiglia D, Pritt M, Dennis C, "Two-Dimensional Phase Unwrapping Theory. Algorithms. and Software," John Wiley & Sons, NewYork, 1998
  17. Liang Z-P, "A model-based method for phase unwrapping," IEEE Trans. Med. Img, Vol.15, no. 6, pp.893-897, 1996. DOI: http://dx.doi.org/10.1109/42.544507
  18. S. M. Song S, Sandy N, Norbert J, "Phase unwrapping of MR phase images using Poisson equations", IEEE Trans. Imase Proc. Vol.4, pp.667-676, 1995. DOI: http://dx.doi.org/10.1109/83.382500
  19. Hu J, Yu Y, Juhasz C, Kou Z, Xuan Y, Latif Z,Kudo K, Chugani HT, Haacke EM, "MR Susceptibility Weighted Imaging (SWI) Complements Conventional Contrast Enhanced T1 Weighted MRI in Characterizing Brain Abnormalities of Sturge-Weber Syndrome", J Magn Reson Imaging, Vol. 28, no.2, pp300-307, 2008. DOI: http://dx.doi.org/10.1002/jmri.21435
  20. Wycliffe ND, Choe J, Holshouser B, Oyoyo UE, Haacke EM, Kido DK, "Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: A retrospective study", J Magn Reson Imaging, Vol. 20, no. 3, pp.372-377, 2004. DOI: http://dx.doi.org/10.1002/jmri.20130
  21. Park JH, Park SW, Kang SH, Nam TK, Min BK, Hwang SN, "Detection of Traumatic Cerebral Microbleeds by Susceptibility-Weighted Image of MRI", J Korean neurosurg soc, Vol. 46, no. 4, pp.365-369, 2009. DOI: http://dx.doi.org/10.3340/jkns.2009.46.4.365
  22. Hartnell GG, Spence L, Hughes LA, Cohen MC, Saoual R, Buff B, "Safety of MR imaging in patients who have retained metallic materials after cardiac surgery", AJR Am J Roentgenol, Vol. 168, no.5, pp.1157-1159, 1997. DOI: http://dx.doi.org/10.2214/ajr.168.5.9129404
  23. Lee Y, Han Y, Park. H ,"A new susceptibility-weighted image reconstruction method for the reduction of background phase artifacts", Magn Reson Med , doi: 10.1002/mrm.24776, 2013. DOI: http://dx.doi.org/10.1002/mrm.24776
  24. Jin Z, Xia L, Zhang M, Du YP, "Background-suppressed MR venography of the brain using magnitude data: a high-pass filtering approach", Comput Math Methods Med. DOI: http://dx.doi.org/10.1155/2014/812785
  25. Li N, Wang WT, Sati P, Pham DL, Butman JA, "Quantitative assessment of susceptibility-weighted imaging processing methods",J Magn Reson Imaging, doi: 10.1002/jmri.24501, 2013 DOI: http://dx.doi.org/10.1002/jmri.24501
  26. Schneider E, Glover G. "Rapid in vivo proton shimming", Magn Reson Med ,Vol. 18, no. 2, pp.335-347, 1991. DOI: http://dx.doi.org/10.1002/mrm.1910180208
  27. Y. H. Han, K. S. Kim, W. B. Chung, Y. S. Kim, S. H. Lee, S. H. Chung, S. H Nam, C. C. Moon. "Improved Center Array-Sequensing Phase Unwrapping(ICASPU) methodfor reconstruction of MR phase image", Journal of the korean society of radiology, pp. 23-26, 2009.
  28. Essig M, Reichenbach JR, Schad LR, Schonberg SO, Debus J, Kaiser WA. "High-resolution MR venography of cerebral arteriovenous malformations", Magn Reson Imaging, Vol. 17, no. 10, pp.1417-1425, 1999. DOI: http://dx.doi.org/10.1016/S0730-725X(99)00084-3
  29. Lee BCP, Vo KD, Kido DK, Mukherjee P, Reichenbach J, Lin W, Yoon MS, Haacke EM, "MR high-resolution blood oxygenation level-dependent venography of occult (low-flow) vascular lesions", AJNR Am J Neuroradiol, Vol. 20, no. 7, pp.1239-1242, 1999.