• Title/Summary/Keyword: Exfoliated vermiculite

Search Result 2, Processing Time 0.017 seconds

A Study for the Removal of Phosphorous Using Coated Exfoliated Vermiculite (인 제거를 위한 코팅 발포질석 적용 가능성 연구)

  • Kim, Seogku;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.5-13
    • /
    • 2014
  • In this study, exfoliated vermiculite (EV) coated with glycerol was tested for its abiility to remove phosphorus in aqueous solution. The glycerol modified vermiculite (GS) was prepared with EV/glycerol ratio of 1/4 where glycerol contained 4 mol% $H_2SO_4$ and heated until designated temperature. GS heated at $380^{\circ}C$ showed that the specific surface area was $53.1m^2/g$ and mass loss due to oxidation of carbon was maximum from TGA analysis. Removal of phosphorus using GS heated at $380^{\circ}C$ was well explained by Langmuir isotherm model and maximum sorption capacity of 714.3 mg/kg is comparable or greater than those of other clay orignated sorbents for phosphorus.

Modification of Vermiculite for Use as a Floating Adsorbent for Copper Removal (수중의 구리 제거를 위한 질석흡착제의 표면개질 연구)

  • Lee, Sangmin;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.5-14
    • /
    • 2016
  • The main objective of this study was to evaluate the removal properties of Cu from existing exfoliated vermiculite (EV) coated with a mixed solution of sulfuric acid and glycerol on the $580^{\circ}C$ in heating, which uses coated with glycerol of copper ions can be removed more effectively. Serial batch kinetic tests and batch sorption tests were conducted to determine the removal characteristics for Cu in aqueous solution. The result of batch kinetic test shows that removal rate, $K_{obs}$ (1/hr), of Cu are 0.579, 0.878, 3.459, and 6.578 for MEV weight 1 g (25 g/L), 2 g (50 g/L), 3 g (75 g/L), 4 g (100 g/L), respectively. In this case the initial pH of the solution was 3.26. The removal experiment according to the concentration, $K_{obs}$ (1/hr), of Cu are 1.96, 0.878, 1.25, and 1.04 for the initial concentration of 3 mg/L, 5 mg/L, 8 mg/L, 10 mg/L, and the initial pH of the solution are 3.46, 3.26, 3.10, 2.96, respectively. Influence of initial pHs on Cu removal were tested under 1g of MEV with 5 mg/L of Cu solution. $K_{obs}$ (1/hr) were increased from 0.263 (pH 3) to 0.525 (pH 5). It leads to the conclusion that the removal rates are inversely proportional to the initial Cu concentration and are increased proportional to the initial pHs. Sorption capacity of MEV was determined by batch sorption tests. The maximum sorption capacity ($Q_{max}$) obtained from Langmuir was 0.761 mg/g, Linear and Freundlich partition coefficients were 0.494 L/g and 0.729 L/g (1/n = 0.476). These results show that the MEV could be used as an excellent adsorbent for copper contained in various types of aqueous solutions.