DOI QR코드

DOI QR Code

Change in Physical Properties of Cold-Extruded Brown Rice and Vegetable Mix at Various Pregelatinized Brown Rice Content and CO2 Gas Injection

예비호화 현미분 함량과 CO2 가스 주입량에 따른 저온 현미-야채류 압출성형물의 물리적 특성 변화

  • Gil, Sun-Kook (Department of Food Science and Technology, Kongju National University) ;
  • Choi, Ji-Hye (Department of Food Science and Technology, Kongju National University) ;
  • Ryu, Gi-Hyung (Department of Food Science and Technology, Kongju National University)
  • Received : 2014.06.13
  • Accepted : 2014.10.28
  • Published : 2014.11.30

Abstract

This study was designed to examine the change in physical properties of extruded brown rice-vegetable mix at different pregelatinized brown rice contents and $CO_2$ gas injection. Moisture content, screw speed and die temperature were fixed to 30%, 100 rpm and 60, respectively. $CO_2$ gas injection was adjusted to 0, 300, 600, and 800 mL/min. The content of vegetables (carrot, pumpkin, kale and Angelica keiskei) mix was fixed 5%. Pregelatinized and raw brown rice powder were blended as the ratio of 0/95, 30/65 and 50/45. Specific mechanical energy input decreased as pregelatinized brown rice ratio increased. Expansion index increased and the size and number of pores increased but density decreased with the increasing in $CO_2$ gas injection. Gelatinization degree increased as $CO_2$ gas injection increased. In conclusion, cold extrusion with $CO_2$ gas injection at $60^{\circ}C$ die temperature could be applied for Saengsik (uncooked food) making.

예비호화 현미분 함량과 $CO_2$ 가스 주입량에 따른 현미-야채류 압출성형물의 물리적 특성에 미치는 영향을 분석하기 위해 비기계적에너지, 팽화 특성, 기계적 특성, 수분용해지수와 수분흡착지수, 미세구조, 페이스트 점도, 호화도를 분석하였다. 수분 함량 30%, 사출구 온도 $60^{\circ}C$, 스크루 회전속도 100 rpm, 원료 사입량 100 g/min, 사출구 3 mm 원형으로 고정하였고, $CO_2$ 가스 주입량(0, 300, 600, 800 mL/min)으로 조절하였다. 원료는 예비호화 현미분/현미분/채소분을 0/95/5, 30/65/5, 50/45/5%로 배합하여 사용하였다. 비기계적에너지 투입량은 예비호화 현미분 함량이 증가할수록 감소하였다. 예비호화 현미분 함량에 따른 압출성형물은 $CO_2$ 가스 주입량이 증가할수록 직경팽화율이 증가하다가 내부 기공이 붕괴되면 직경팽화율은 감소하였다. $CO_2$ 가스 주입량이 증가할수록 체적밀도는 감소하였다. 예비호화 현미분 함량이 감소할수록 $CO_2$ 가스 주입량에 따른 기공의 변화가 크게 나타났다. 페이스트 점도 측정 결과는 저온최고 점도가 나타나지 않았으며 원료와 유사한 peak time을 가지고 고온최고점도를 나타내었다. 또한 $CO_2$ 가스 주입량이 증가할수록 호화도도 증가하였다. 결론적으로 $CO_2$ 가스를 주입한 $60^{\circ}C$의 저온 압출성형공정은 재래식 압출성형공정과 동일한 팽화율과 낮은 밀도는 아니지만 생식팽화스낵 제조에 적용될 수 있는 공정으로 판단되었다.

Keywords

References

  1. Lee SY. 2002. Manufacture processing of uncooked food on the market. Food Ind 7: 11-15.
  2. Jin TY, Oh DH, Rhee CO, Chung DO, Eun JB. 2006. Change of physicochemical characteristics and functional components in the cereal of Saengsik, uncooked food by washing with electrolyzed water. Korean J Food Sci Technol 38: 506-512.
  3. Chang TE, Moon SY, Lee KW, Park JM, Han JS, Song OJ, Shin IS. 2004. Safety/toxicology: microflora of manufacturing process and final products of Saengshik. Korean J Food Sci Technol 36: 501-506.
  4. Lee YJ, Lee HM, Park TS. 2003. Effects of uncooked powdered food on antioxidative system and serum mineral concentrations in rats fed unbalanced diet. Korean J Nutr 36: 898-907.
  5. Park JY, Jeong HJ, Kim YM, Park SJ, Rho MC, Park KH, Ryu YB, Lee WS. 2011. Characteristic of alkylated chalcones from Angelica keiskei on influenza virus neuraminidase inhibition. Bioorg Med Chem Lett 21: 5602-5604. https://doi.org/10.1016/j.bmcl.2011.06.130
  6. Lisiewska Z, Kmiecik W, Korus A. 2008. The amino acid composition of kale (Brassica oleracea L. var. acephala), fresh and after culinary and technological processing. Food Chem 108: 642-648. https://doi.org/10.1016/j.foodchem.2007.11.030
  7. Kim SL, Son YK, Son JR, Hur HS. 2001. Effect of germination condition and drying methods of physicochemical properties of sprouted brown rice. Korean J Crop Sci 46: 221-228.
  8. Gu BJ, Ryu GH. 2011. Effects of die geometry on expansion of corn flour extrudate. Food Eng Prog 15: 148-154.
  9. Happer JM. 1989. Food extruders and their application. In Extrusion Cooking. Mercier C, Linko P, Harper JM, eds. AACC, Inc., St. Paul, MN, USA. p 91-155.
  10. Ryu GH, Mulvaney SJ. 1997. Analysis of physical properties and mechanical energy input of cornmeal extrudates fortified with dairy products by carbon dioxide injection. Korean J Food Sci Technol 29: 947-954.
  11. Ryu GH. 1995. Extrusion process with gas injection. Food Sci Ind 28: 30-38.
  12. Ryu GH, Mulvaney SJ. 1995. Cornmeal puffing with $CO_2$ gas: effect of sucrose and glyceryl monostearate (GMS). Korean J Food Sci Technol 27: 251-256.
  13. Ryu GH, Mulvaney SJ, Rizvi SSH. 1993. The effect of sucrose and glyceryl monostearate (GMS) on process variables and properties of cornmeal extrudates puffed with carbon dioxide gas. 53rd Annual Meeting of IFT, Chicago, IL, USA. p 127.
  14. Gil SK, Ryu GH. 2013. Effects of die temperature and $CO_2$ gas injection on physical properties of extruded brown ricevegetable mix. J Korean Soc Food Sci Nutr 42: 1848-1856. https://doi.org/10.3746/jkfn.2013.42.11.1848
  15. Alverez-Martinez L, Kondury KP, Happer JM. 1988. A general model for expansion of extruded products. J Food Sci 53: 609-615. https://doi.org/10.1111/j.1365-2621.1988.tb07768.x
  16. Tie J, Gu BJ, Ryu GH. 2010. Manufacturing of hemp seed flake by using extrusion process. Food Eng Prog 14: 99-105.
  17. Ryu GH, Ng PKW. 2001. Effects of selected process parameters on expansion and mechanical properties of wheat flour and whole cornmeal extrudates. Starch-Starke 53: 147-154. https://doi.org/10.1002/1521-379X(200104)53:3/4<147::AID-STAR147>3.0.CO;2-V
  18. AACC. 1983. Approved method of the AACC. 10th ed. American Association of Cereal Chemists, St. Paul, MN, USA. Method 56-20.
  19. Ryu GH, Neumann PE, Walker CE. 1993. Pasting of wheat flour extrudates containing conventional baking ingredients. J Food Sci 58: 567-573. https://doi.org/10.1111/j.1365-2621.1993.tb04325.x
  20. Nelson N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153: 375-377.
  21. Senouci A, Smith AC. 1986. The extrusion cooking of potato starch material. Starch-Starke 38: 78-82. https://doi.org/10.1002/star.19860380304
  22. Tayeb J, Valle GD, Barres C, Vergnes B. 1992. Simulation of transport phenomena in twin-screw extruders. Marcel Dekker, Inc., New York, NY, USA. p 41-70.
  23. Jeong HS, Min YK, Toledo RT. 2002. Effects of low temperature extrusion method on the physical properties and cell structure of pregelatinized rice flour extrudate. Food Eng Prog 6: 145-151.
  24. Chinnaswamy R, Hanna MA. 1999. Macromolecular and functional properties of native and extrusion cooked cornstarch. Cereal Chem 6: 490-498.
  25. Ferdinand JM, Lai-Fook RA, Ollett AL, Smith AC, Clark SA. 1990. Structure formation by carbon dioxide injection in extrusion cooking. J Food Eng 11: 209-224. https://doi.org/10.1016/0260-8774(90)90028-7
  26. Ryu GH, Kang SH, Lee EY, Lim ST. 1997. Effect of $CO_2$ gas injection on properties of extruded corn starch. J Korean Soc Food Sci Nutr 26: 436-442.

Cited by

  1. Comparison of Antioxidant Activities of Extruded Rice with Vegetables by Cold and Conventional Extrusion vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1212
  2. Effects of Die Temperature and CO2Injection on Physical Properties and Antioxidant Activity of Extruded Rice with Tomato Flour vol.44, pp.6, 2015, https://doi.org/10.3746/jkfn.2015.44.6.912
  3. Effects of Psyllium Husk Content on the Physical Properties of Extruded Rice Flour vol.23, pp.4, 2019, https://doi.org/10.13050/foodengprog.2019.23.4.283