References
- Akesson, K. (2003) New approaches to pharmacological treatment of osteoporosis. Bull. World Health Organ. 81, 657-664.
- Bae, I. H.,Yun, K. D., Kim, H. S., Jeong, B. C., Lim, H. P., Park, S. W., Lee, K. M., Lim, Y. C., Lee, K. K., Yang, Y. and Koh, J. T. (2010) Anodic oxidized nanotubular titanium implants enhance bone morphogenic protein-2 delivery. J. Biomed. Mater Res. B Appl. Biomater. 93, 484-491.
-
Balasundaram, G., Yao, C. and Webster, T. J. (2008)
$TiO_2$ nanotubes functionalized with regions of bone morphogenetic protein-2 increase osteoblast adhesion. J. Biomed. Mater. Res. A 84, 447-453. - Bhandari, M., Bajammal, S., Guyatt, G. H, Griffith, L., Busse, J. W., Schunemann, H. and Einhorn, T. A. (2005) Effect of bisphosphonates on periprosthetic bone mineral density after total joint arthroplasty. A. meta-analysis. J. Bone Joint Surg. Am. 87, 293-301. https://doi.org/10.2106/JBJS.D.01772
-
Brammer, K. S., Oh, S., Cobb, C. J., Bjursten, L. M., van der Heyde, H. and Jin, S. (2009) Improved bone forming functuality on diametercontrolled
$TiO_2$ nanotube furface. Acta Biometer. 5, 3215-3223. https://doi.org/10.1016/j.actbio.2009.05.008 - Carano, A., Teitlebaum, S. L., Konsek, J. K., Schlesinger, P. H. and Blair, H. C. (1990) Bisphosphonates directly inhibit the resorption activity of isolated avian osteoclasts in vitro. J. Clin. Invest. 85, 456-461. https://doi.org/10.1172/JCI114459
- Cohen D. P. (2003) Anti-osteoporotic medications: traditional and nontraditional. Clin. Obstet.Gynecol. 46, 341-348. https://doi.org/10.1097/00003081-200306000-00012
- Fleisch, H. (1998) Bisphosphonates: mechanisms of action. Endocr. Rev. 19, 80-100. https://doi.org/10.1210/edrv.19.1.0325
- Garcia-Moreno, C., Serrano, S., Nacher, M., Farre, M., Diez, A., Marinoso, M. L., Carbonell, J., Mellibovsky, L., Nogues, X., Ballester, J. and Aubia, J. (1998) Effect of alendronate on cultured normal human osteoblasts. Bone 22, 233-239. https://doi.org/10.1016/S8756-3282(97)00270-6
- Giavaresi, G., Giardino, R., Ambrosio, L., Battiston, G., Gerbasi, R., Fini, M, Rimondini, L. and Torricelli, P. (2003) In vitro biocompatibility of titanium oxide for prosthetic devices nanostructured by low pressure metal-organic chemical vapor deposition. Int. J. Artif. Organs 26, 774-780. https://doi.org/10.1177/039139880302600811
- Hilding, M. and Aspenberg, P. (2006) Postoperative clodronate decreases prosthetic migration: 4-year follow-up of a randomized radiostereometric study of 50 total knee patients. Acta Orthop. 77, 912-916. https://doi.org/10.1080/17453670610013213
- Hughes, D. E., MacDonald, B. R., Russell, R. G. and Gowen, M. (1989) Inhibition of osteoclast-like cell formation by bisphosphonates in longterm cultures of human bone marrow. J. Clin. Invest. 83, 1930-1935. https://doi.org/10.1172/JCI114100
- Jakobsen, T., Kold, S., Bechtold, J. E., Elmengaard, B. and Soballe, K. (2007) Local alendronate increases fixation of implants inserted with bone compaction: 12-week canine study. J. Orthop. Res. 25, 432-441. https://doi.org/10.1002/jor.20276
- Jensen, T. B., Bechtold, J. E., Chen, X. and Soballe, K. (2007) Systemic alendronate treatment improves fixation of press-fit implants: a canine study using nonloaded implants. J. Orthop. Res. 25, 772-778. https://doi.org/10.1002/jor.20272
- Jones, F. H. (2001) Teeth and bones: applications of surface science to dental materials and related biomaterials. Surf. Sci. Rep. 42, 75-205. https://doi.org/10.1016/S0167-5729(00)00011-X
- Lee, S. J., Oh, T. J., Bae, T. S., Lee, M. H., Soh, Y., Kim, B. I. and Kim, H. S. (2011) Effect of bisphosphonates on anodized and heattreated titanium surfaces: an animal experimental study. J. Periodontol. 82, 1035-1042. https://doi.org/10.1902/jop.2010.100608
- Meraw, S. J. and Reeve, C. M. (1999) Qualitative analysis of peripheral peri-implant bone and influence of alendronate sodium on early bone regeneration. J. Periodontol. 70, 1228-1233. https://doi.org/10.1902/jop.1999.70.10.1228
- Meraw, S. J., Reeve, C. M. and Wollan, P. C. (1999) Use of alendronate in peri-implant defect regeneration. J. Periodontol. 70, 151-158. https://doi.org/10.1902/jop.1999.70.2.151
- Motohashi, M., Shirota, T., Tokugawa, Y., Ohno, K., Michi, K. and Yamaguchi, A. (1999) Bone reactions around hydroxyapatite-coated implants in ovariectomized rats. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 87, 145-152. https://doi.org/10.1016/S1079-2104(99)70264-7
- Nepal, M., Li, L., Cho, H. K., Park, J. K. and Soh, Y. (2013) Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/ BMP-2 signaling pathway. Food Chem. Toxicol. 62, 238-245 https://doi.org/10.1016/j.fct.2013.08.034
-
Park, J., bauer, S., Schlegel, K. A., Neukam, E. W., von der Mark, K. and Schmuki, P. (2009)
$TiO_2$ nanotube surfaces: 15nm-an optimal length scale of surface topography for cell adhesion and differentiation. Small 5, 666-671. https://doi.org/10.1002/smll.200801476 - Pazianas, M., Miller, P., Blumentals, W.A., Bernal, M. and Kothawala, P. A. (2007) A reivew of the literature on osteonecrosis of the jaw in patients with osteoporosis treated with oral bisphosphonates: prevalence, risk factors, and clinical characteristics. Clin. Ther. 29, 1548-1558. https://doi.org/10.1016/j.clinthera.2007.08.008
- Pohler, O. E. (2000) Unalloyed titanium for implants in bone surgery. Injury 31, 7-13. https://doi.org/10.1016/S0020-1383(99)00191-6
- Popat, K. C., Eltgroth, M., Latempa, T. J., Grimes, C. A. and Desai, T. A. (2007a) Decreased staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28, 4880-4888. https://doi.org/10.1016/j.biomaterials.2007.07.037
- Popat, K. C., Leoni, L., Grimes, C. A. and Desai, T. A. (2007b) Influence of engineered titania nanotubular surface on bone cells. Biomaterials 28, 3188-3197. https://doi.org/10.1016/j.biomaterials.2007.03.020
- Ratner, B. D. (2001) Replacing and renewing: synthetic materials, biomimetics, and tissue engineering in implant dentistry. J. Dent. Educ. 65, 1340-1347.
- Reszka, A. A., Halasy-Nagy, J. M., Masarachia, P. J. and Rodan, G. A. (1999) Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mst 1 kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis-promoting kinase. J. Biol. Chem. 274, 34967-34973. https://doi.org/10.1074/jbc.274.49.34967
- Shanbhag, A. S., Hasselman, C. T. and Rubash, H. E. (1997) The John Charnley Award. Inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model. Clin. Orthop. Relat. Res. 344, 33-43.
- Tengvall, P., Skoglund, B., Askendal, A., Aspenberg, P. (2004) Surface immobilized bisphosphonate improves stainless-steel screw fixation in rats. Biomaterials 25, 2133-2138. https://doi.org/10.1016/j.biomaterials.2003.08.049
- Textor, M., Sitting, C., Frauchiger ,V., Tosatti, S. and Brunette, D. (2001) Properties and biological significance of natural oxide films on titanium and its alloys. In Titanium in Medicine (D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Ed.), pp. 171-230. Springer-Verlag, Berlin.
- von Knoch, F., Jaquiery, C., Kowalsky, M., Schaeren, S., Alabre, C., Martin, I., Rubash, H. E. and Shanbhag, A. S. (2005) Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials 26, 6941-6949. https://doi.org/10.1016/j.biomaterials.2005.04.059
- Xie, Z., Jiang, Y. and Zhang, D. Q. (2006) Simple analysis of four bisphosphonates simultaneously by reverse phase liquid chromatography using n-amylamine as volatile ion-pairing agent. J. Chromatogr. A 1104, 173-178.
- Yan, W. Q., Nakamura, T., Kobayashi, M., Kim, H. M., Miyaji, F. and Kokubo, T. (1997) Bonding of chemically treated titanium implants to bone. J. Biomed. Mater. Res. 37, 267-275. https://doi.org/10.1002/(SICI)1097-4636(199711)37:2<267::AID-JBM17>3.0.CO;2-B
- Yao, C. and Webster, T. J. (2009) Prolonged antibiotic delivery from anozided nanotubular titanium using a co-precipitation drugs loading method. J. Biomed. Mater. Res. B Appl. Biomater. 91, 87-595.
Cited by
- Does Local Ibandronate and/or Pamidronate Delivery Enhance Osseointegration? A Systematic Review 2016, https://doi.org/10.1111/jopr.12571
- Osseodensification for enhancement of spinal surgical hardware fixation vol.69, 2017, https://doi.org/10.1016/j.jmbbm.2017.01.020
- Bisphosphonate releasing dental implant surface coatings and osseointegration: A systematic review vol.12, pp.5, 2017, https://doi.org/10.1016/j.jtumed.2017.05.007
- hetero-structure for improving osteointegration vol.6, pp.23, 2018, https://doi.org/10.1039/C8TB00709H
- Bisphosphonate-related osteonecrosis of the jaw and dental implants vol.50, pp.1, 2014, https://doi.org/10.17096/jiufd.24812
- A comparison of micro-CT and histomorphometry for evaluation of osseointegration of PEO-coated titanium implants in a rat model vol.7, pp.None, 2014, https://doi.org/10.1038/s41598-017-16465-4
- Enhanced Osseointegration of Hierarchically Structured Ti Implant with Electrically Bioactive SnO2-TiO2 Bilayered Surface vol.10, pp.36, 2018, https://doi.org/10.1021/acsami.8b10928
- Customized Therapeutic Surface Coatings for Dental Implants vol.10, pp.6, 2014, https://doi.org/10.3390/coatings10060568
- Ten Years of Micro-CT in Dentistry and Maxillofacial Surgery: A Literature Overview vol.10, pp.12, 2014, https://doi.org/10.3390/app10124328