References
- Adey, W. R. (1993) Biological effects of electromagnetic fields. J. Cell. Biochem. 51, 410-416. https://doi.org/10.1002/jcb.2400510405
- Athanasiou, A., Karkambounas, S., Batistatou, A., Lykoudis, E., Katsaraki, A., Kartsiouni, T., Papalois, A. and Evangelou, A. (2007) The effect of pulsed electromagnetic fields on secondary skin wound healing: An experimental study. Bioelectromagnetics 28, 362-368. https://doi.org/10.1002/bem.20303
- Avendano, C., Mata, A., Sanchez Sarmiento, C. A. and Doncel, G. F. (2012) Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation. Fertil. Steril. 97, 39-45. e2. https://doi.org/10.1016/j.fertnstert.2011.10.012
- Balassa, T., Szemerszky, R. and Bardos, G. (2009) Effect of shortterm 50 Hz electromagnetic field exposure on the behavior of rats. Physiol. Hung. 96, 437-448. https://doi.org/10.1556/APhysiol.96.2009.4.4
- Bullmore, E. and Sporns, O. (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186-198. https://doi.org/10.1038/nrn2575
- Ciccocioppo, R., Martin-Fardon, R., Weiss, F. and Massi, M. (2001) Nociceptin/orphanin FQ inhibits stress-and CRF-induced anorexia in rats. Neuroreport 12, 1145-1149. https://doi.org/10.1097/00001756-200105080-00019
- Coleman, M. and Bera, V. (1988) A review of epidemiological studies of the health effects of living near or working with electricity generation and transmission equipment. Int. J. Epidemiol. 17, 1-13. https://doi.org/10.1093/ije/17.1.1
- Czyrak, A., Mackowiak, M., Chocyk, A., Fijal, K. and Wedzony, K. (2003) Role of glucocorticoids in the regulation of dopaminergic neurotransmission. Pol. J. Pharmacol. 55, 667-674.
- Fernie, K. J. and Bird, D. M. (2001) Evidence of oxidative stress in American kestrels exposed to electromagnetic fields. Environ. Res. 86, 198-207. https://doi.org/10.1006/enrs.2001.4263
- Feychting, M., Ahlbom, A. and Kheifets, L. (2005) EMF and health. Annu. Rev. Public Health 26, 165-189. https://doi.org/10.1146/annurev.publhealth.26.021304.144445
-
Grassi, C., D'Ascenzo, M., Torsello, A., Martinotti, G., Wolf, F., Cittadini, A. and Azzena, G. B. (2004) Effects of 50Hz electromagnetic fields on voltage-gated
$Ca^{2+}$ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35, 307-315. https://doi.org/10.1016/j.ceca.2003.09.001 - Grundler, W., Kaiser, F., Keilmann, F. and Walleczek, J. (1992) Mechanisms of electromagnetic interaction with cellular systems. Naturwissenschaften 79, 551-559. https://doi.org/10.1007/BF01131411
- Gunnar, M. and Quevedo, K. (2007) The neurobiology of stress and development. Annu. Rev. Psychol. 58, 145-173. https://doi.org/10.1146/annurev.psych.58.110405.085605
- Haarala, C., Bjornberg, L., Ek, M., Laine, M., Revonsuo, A., Koivisto, M. and Hamalainen, H. (2003) Effect of a 902 MHz electromagnetic field emitted by mobile phones on human cognitive function: A replication study. Bioelectromagnetics 24, 283-288. https://doi.org/10.1002/bem.10105
- Hayakawa, M. (2004) Electromagnetic phenomena associated with earthquakes: A frontier in terrestrial electromagnetic noise environment. Recent Res. Devel. Geophysics 6, 81-112.
- Karatsoreos, I. N. and McEwen, B. S. (2011) Psychobiological allostasis: resistance, resilience and vulnerability. Trends Cogn. Sci. 15, 576-584. https://doi.org/10.1016/j.tics.2011.10.005
- Kerr, J. F., Wyllie, A. H. and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. https://doi.org/10.1038/bjc.1972.33
- Kheifets, L., Repacholi, M., Saunders, R. and Van Deventer, E. (2005) The sensitivity of children to electromagnetic fields. Pediatrics 116, e303-e313. https://doi.org/10.1542/peds.2004-2541
- Kovacic, P. and Edwards, C. (2010) Integrated approach to the mechanisms of thyroid toxins: electron transfer, reactive oxygen species, oxidative stress, cell signaling, receptors, and antioxidants. J. Recept. Signal Transduct. Res. 30, 133-142. https://doi.org/10.3109/10799891003702678
- Kula, B., Sobczak, A., Grabowska-Bochenek, R. and Piskorska, D. (1999) Effect of electromagnetic field on serum biochemical parameters in steelworkers. J. Occup. Health 41, 177-180. https://doi.org/10.1539/joh.41.177
- Lahijani, M. S., Tehrani, D. M. and Sabouri, E. (2009) Histopathological and ultrastructural studies on the effects of electromagnetic fields on the liver of preincubated white leghorn chicken embryo. Electromagn. Biol. Med. 28, 391-413. https://doi.org/10.3109/15368370903287689
- Levitt, M. H. (2008) Spin dynamics: basics of nuclear magnetic resonance. John Wiley & Sons, England.
- Michal, K. and Marta, W. O. (2004) Electromagnetic fields and human endocrine system. Sci. World J. 4, 23-28. https://doi.org/10.1100/tsw.2004.175
- Pesce, M., Patruno, A., Speranza, L. and Reale, M. (2013) Extremely low frequency electromagnetic field and wound healing: implication of cytokines as biological mediators. Eur. Cytokine Netw. 24, 1-10.
- Pirozzoli, M., Marino, C., Lovisolo, G., Laconi, C., Mosiello, L. and Negroni, A. (2003) Effects of 50 Hz electromagnetic field exposure on apoptosis and differentiation in a neuroblastoma cell line. Bioelectromagnetics 24, 510-516. https://doi.org/10.1002/bem.10130
- Reul, J., Stec, I., Soder, M. and Holsboer, F. (1993) Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic-pituitary-adrenocortical system. Endocrinology 133, 312-320. https://doi.org/10.1210/endo.133.1.8391426
- Richardson, N. R. and Gratton, A. (1996) Behavior-relevant changes in nucleus accumbens dopamine transmission elicited by food reinforcement: an electrochemical study in rat. J. Neurosci. 16, 8160-8169.
- Salamone, J., Cousins, M. and Snyder, B. (1997) Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci. Biobehav. Rev. 21, 341-359. https://doi.org/10.1016/S0149-7634(96)00017-6
- Santini, M. T., Rainaldi, G. and Indovina, P. L. (2009) Cellular effects of extremely low frequency (ELF) electromagnetic fields. Int. J. Radiat. Biol. 85, 294-313. https://doi.org/10.1080/09553000902781097
- Szemerszky, R., Zelena, D., Barna, I. and Bardos, G. (2010) Stressrelated endocrinological and psychopathological effects of shortand long-term 50Hz electromagnetic field exposure in rats. Brain Res. Bull. 81, 92-99. https://doi.org/10.1016/j.brainresbull.2009.10.015
- Turro, N. J. (1991) Modern molecular photochemistry. University Science Books, USA.
- Wilson, B. W., Stevens, R. G. and Anderson, L. E. (1990) Extremely low frequency electromagnetic fields, Battelle Press, USA.
- Yamamoto, J. (1998) Relationship between hippocampal theta-wave frequency and emotional behaviors in rabbits produced with stresses or psychotropic drugs. Jpn. J. Pharmacol. 76, 125-127. https://doi.org/10.1254/jjp.76.125
- Zhang, X. R., Kobayashi, H., Hayakawa, A. and Ishigaki, T. (1995) An evaluation of the biological effects of three different modes of magnetic fields on cultured mammalian cells. J. Med. Sci. 58, 157-164.
Cited by
- Statistical Evaluations of Variations in Dairy Cows’ Milk Yields as a Precursor of Earthquakes vol.7, pp.3, 2017, https://doi.org/10.3390/ani7030019
- Common behaviors alterations after extremely low-frequency electromagnetic field exposure in rat animal model 2015, https://doi.org/10.3109/15368378.2015.1054401
- Reactive oxygen species and male reproductive hormones vol.16, pp.1, 2018, https://doi.org/10.1186/s12958-018-0406-2
- Dynamics of Metabolic Parameters in Rats during Repeated Exposure to Modulated Low-Intensity UHF Radiation vol.165, pp.4, 2018, https://doi.org/10.1007/s10517-018-4184-9
- Aluminium foil dampened the adverse effect of 2100 MHz mobile phone–induced radiation on the blood parameters and myocardium in rats pp.1614-7499, 2019, https://doi.org/10.1007/s11356-019-04601-8
- Transient Inactivation of Shell Part of Nucleus Accumbens Inhibits and Exacerbates Stress-Induced Metabolic Alterations in Wistar Rats vol.8, pp.2, 2014, https://doi.org/10.18869/nirp.bcn.8.2.121
- ДИНАМИКА ПОВЕДЕНЧЕСКОЙ АКТИВНОСТИ И ПОКАЗАТЕЛЕЙ МЕТАБОЛИЗМА У КРЫС ПРИ МНОГОКРАТНОМ ВОЗДЕЙСТВИИ ЭЛЕКТРОМА vol.104, pp.10, 2014, https://doi.org/10.7868/s086981391810009x
- Role of designed Bio-Geometrical forms in antagonizing neurobehavioral burden of Wi-Fi radiation: Evidence-based experimental study vol.12, pp.3, 2014, https://doi.org/10.13005/bpj/1751
- Comparison of polymerization and structural behavior of microtubules in rat brain and sperm affected by the extremely low-frequency electromagnetic field vol.20, pp.1, 2014, https://doi.org/10.1186/s12860-019-0224-1
- Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia vol.16, pp.7, 2014, https://doi.org/10.4103/1673-5374.301020
- Extremely Low-Frequency Magnetic Field as a Stress Factor-Really Detrimental?-Insight into Literature from the Last Decade vol.11, pp.2, 2021, https://doi.org/10.3390/brainsci11020174
- Effect of extremely low frequency magnetic fields on oxidative balance in rat brains subjected to an experimental model of chronic unpredictable mild stress vol.22, pp.1, 2014, https://doi.org/10.1186/s12868-021-00656-x
- Establishment of injury models in studies of biological effects induced by microwave radiation vol.8, pp.1, 2014, https://doi.org/10.1186/s40779-021-00303-w