DOI QR코드

DOI QR Code

Arsenite Acutely Decreases Nitric Oxide Production via the ROS-Protein Phosphatase 1-Endothelial Nitric Oxide Synthase-Thr497 Signaling Cascade

  • Seo, Jungwon (Department of Molecular Medicine, School of Medicine, Ewha Womans University) ;
  • Lee, Jee Young (Department of Molecular Medicine, School of Medicine, Ewha Womans University) ;
  • Sung, Min-Sun (Department of Molecular Medicine, School of Medicine, Ewha Womans University) ;
  • Byun, Catherine Jeonghae (Department of Molecular Medicine, School of Medicine, Ewha Womans University) ;
  • Cho, Du-Hyong (Department of Pharmacology, School of Medicine, Eulji University) ;
  • Lee, Hyeon-Ju (Department of Molecular Medicine, School of Medicine, Ewha Womans University) ;
  • Park, Jung-Hyun (Department of Molecular Medicine, School of Medicine, Ewha Womans University) ;
  • Cho, Ho-Seong (Biosafety Research Institute and College of Veterinary Medicine, Chonbuk National University) ;
  • Cho, Sung-Jin (Department of Biology, College of Natural Sciences, Chungbuk National University) ;
  • Jo, Inho (Department of Molecular Medicine, School of Medicine, Ewha Womans University)
  • Received : 2014.09.25
  • Accepted : 2014.10.22
  • Published : 2014.11.30

Abstract

Chronic (>24 h) exposure of arsenite, an environmental toxicant, has shown the decreased nitric oxide (NO) production in endothelial cells (EC) by decreasing endothelial NO synthase (eNOS) expression and/or its phosphorylation at serine 1179 ($eNOS-Ser^{1179}$ in bovine sequence), which is associated with increased risk of vascular diseases. Here, we investigated the acute (<24 h) effect of arsenite on NO production using bovine aortic EC (BAEC). Arsenite acutely increased the phosphorylation of $eNOS-Thr^{497}$, but not of $eNOS-Ser^{116}$ or $eNOS-Ser^{1179}$, which was accompanied by decreased NO production. The level of eNOS expression was unaltered under this condition. Treatment with arsenite also induced reactive oxygen species (ROS) production, and pretreatment with a ROS scavenger N-acetyl-L-cysteine (NAC) completely reversed the observed effect of arsenite on $eNOS-Thr^{497}$ phosphorylation. Although protein kinase C (PKC) and protein phosphatase 1 (PP1) were reported to be involved in $eNOS-Thr^{497}$ phosphorylation, treatment with PKC inhibitor, Ro318425, and overexpression of various PKC isoforms did not affect the arsenite-stimulated $eNOS-Thr^{497}$ phosphorylation. In contrast, treatment with PP1 inhibitor, calyculin A, mimicked the observed effect of arsenite on $eNOS-Thr^{497}$ phosphorylation. Lastly, we found decreased cellular PP1 activity in arsenite-treated cells, which was reversed by NAC. Overall, our study demonstrates firstly that arsenite acutely decreases NO production at least in part by increasing $eNOS-Thr^{497}$ phosphorylation via ROS-PP1 signaling pathway, which provide the molecular mechanism underlying arsenite-induced increase in vascular disease.

Keywords

References

  1. Barchowsky, A., Klei, L. R., Dudek, E. J., Swartz, H. M. and James, P. E. (1999) Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic. Biol. Med. 27, 1405-1412. https://doi.org/10.1016/S0891-5849(99)00186-0
  2. Chen, Z. P., Mitchelhill, K. I., Michell, B. J., Stapleton, D., Rodriguez-Crespo, I., Witters, L. A., Power, D. A., Ortiz de Montellano, P. R. and Kemp, B. E. (1999) AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett. 443, 285-289. https://doi.org/10.1016/S0014-5793(98)01705-0
  3. Cho, D. H., Choi, Y. J., Jo, S. A. and Jo, I. (2004) Nitric oxide production and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with troglitazone: evidence for involvement of peroxisome proliferator-activated receptor (PPAR) gamma-dependent and PPARgamma-independent signaling pathways. J. Biol. Chem. 279, 2499-2506. https://doi.org/10.1074/jbc.M309451200
  4. Cho, D. H., Park, J. H., Joo Lee, E., Jong Won, K., Lee, S. H., Kim, Y. H., Hwang, S., Ja Kwon, K., Young Shin, C., Song, K. H., Jo, I. and Han, S. H. (2014) Valproic acid increases NO production via the SH-PTP1-CDK5-eNOS-Ser signaling cascade in endothelial cells and mice. Free Radic. Biol. Med. 76, 96-106 https://doi.org/10.1016/j.freeradbiomed.2014.07.043
  5. Cho, D. H., Seo, J., Park, J. H., Jo, C., Choi, Y. J., Soh, J. W. and Jo, I. (2010) Cyclin-dependent kinase 5 phosphorylates endothelial nitric oxide synthase at serine 116. Hypertension 55, 345-352. https://doi.org/10.1161/HYPERTENSIONAHA.109.140210
  6. Cosentino-Gomes, D., Rocco-Machado, N. and Meyer-Fernandes, J. R. (2012) Cell signaling through protein kinase C oxidation and activation. Int. J. Mol. Sci. 13, 10697-10721. https://doi.org/10.3390/ijms130910697
  7. Fetrow, J. S., Siew, N. and Skolnick, J. (1999) Structure-based functional motif identifies a potential disulfide oxidoreductase active site in the serine/threonine protein phosphatase-1 subfamily. FASEB J. 13, 1866-1874. https://doi.org/10.1096/fasebj.13.13.1866
  8. Fleming, I., Fisslthaler, B., Dimmeler, S., Kemp, B. E. and Busse, R. (2001) Phosphorylation of Thr(495) regulates Ca(2+)/calmodulindependent endothelial nitric oxide synthase activity. Circ. Res. 88, E68-75. https://doi.org/10.1161/hh1101.092677
  9. Gao, N., Shen, L., Zhang, Z., Leonard, S. S., He, H., Zhang, X. G., Shi, X. and Jiang, B. H. (2004) Arsenite induces HIF-1alpha and VEGF through PI3K, Akt and reactive oxygen species in DU145 human prostate carcinoma cells. Mol. Cell. Biochem. 255, 33-45. https://doi.org/10.1023/B:MCBI.0000007259.65742.16
  10. Greif, D. M., Kou, R. and Michel, T. (2002) Site-specific dephosphorylation of endothelial nitric oxide synthase by protein phosphatase 2A: evidence for crosstalk between phosphorylation sites. Biochemistry 41, 15845-15853. https://doi.org/10.1021/bi026732g
  11. Hall, M. N., Liu, X., Slavkovich, V., Ilievski, V., Pilsner, J. R., Alam, S., Factor-Litvak, P., Graziano, J. H. and Gamble, M. V. (2009) Folate, cobalamin, cysteine, homocysteine, and arsenic metabolism among children in bangladesh. Environ. Health Perspect. 117, 825-831. https://doi.org/10.1289/ehp.0800164
  12. Harris, M. B., Ju, H., Venema, V. J., Liang, H., Zou, R., Michell, B. J., Chen, Z. P., Kemp, B. E. and Venema, R. C. (2001) Reciprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation. J. Biol. Chem. 276, 16587-16591. https://doi.org/10.1074/jbc.M100229200
  13. Isenovic, E., Soskic, S., Dungen, H. D., Dobutovic, B., Elvis, T., Simone, I. and Marche, P. (2011) Regulation of endothelial nitric oxide synthase in pathophysiological conditions. Cardiovasc. Hematol. Disord. 11, 109-118. https://doi.org/10.2174/187152911798346972
  14. Kamat, C. D., Green, D. E., Curilla, S., Warnke, L., Hamilton, J. W., Sturup, S., Clark, C. and Ihnat, M. A. (2005) Role of HIF signaling on tumorigenesis in response to chronic low-dose arsenic administration. Toxicol. Sci. 86, 248-257. https://doi.org/10.1093/toxsci/kfi190
  15. Kao, Y. H., Yu, C. L., Chang, L. W. and Yu, H. S. (2003) Low concentrations of arsenic induce vascular endothelial growth factor and nitric oxide release and stimulate angiogenesis in vitro. Chem. Res. Toxicol. 16, 460-468. https://doi.org/10.1021/tx025652a
  16. Kim, H. P., Lee, J. Y., Jeong, J. K., Bae, S. W., Lee, H. K. and Jo, I. (1999) Nongenomic stimulation of nitric oxide release by estrogen is mediated by estrogen receptor alpha localized in caveolae. Biochem. Biophys. Res. Commun. 263, 257-262. https://doi.org/10.1006/bbrc.1999.1348
  17. Kim, H. S., Song, M. C., Kwak, I. H., Park, T. J. and Lim, I. K. (2003) Constitutive induction of p-Erk1/2 accompanied by reduced activities of protein phosphatases 1 and 2A and MKP3 due to reactive oxygen species during cellular senescence. J. Biol. Chem. 278, 37497-37510. https://doi.org/10.1074/jbc.M211739200
  18. Kumagai, Y. and Pi, J. (2004) Molecular basis for arsenic-induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction. Toxicol. Appl. Pharmacol. 198, 450-457. https://doi.org/10.1016/j.taap.2003.10.031
  19. Lee, H. J., Oh, Y. K., Rhee, M., Lim, J. Y., Hwang, J. Y., Park, Y. S., Kwon, Y., Choi, K. H., Jo, I., Park, S. I., Gao, B. and Kim, W. H. (2007) The role of STAT1/IRF-1 on synergistic ROS production and loss of mitochondrial transmembrane potential during hepatic cell death induced by LPS/d-GalN. J. Mol. Biol. 369, 967-984. https://doi.org/10.1016/j.jmb.2007.03.072
  20. Lee, M. Y., Jung, B. I., Chung, S. M., Bae, O. N., Lee, J. Y., Park, J. D., Yang, J. S., Lee, H. and Chung, J. H. (2003) Arsenic-induced dysfunction in relaxation of blood vessels. Environ. Health Perspect. 111, 513-517. https://doi.org/10.1289/ehp.5916
  21. Liu, F., Jan, K. Y. (2000) DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells. Free Radic. Biol. Med. 28, 55-63. https://doi.org/10.1016/S0891-5849(99)00196-3
  22. Mandal, B. K. and Suzuki, K. T. (2002) Arsenic round the world: a review. Talanta 58, 201-235. https://doi.org/10.1016/S0039-9140(02)00268-0
  23. Matsubara, M., Hayashi, N., Jing, T. and Titani, K. (2003) Regulation of endothelial nitric oxide synthase by protein kinase C. J. Biochem. (Tokyo) 133, 773-781. https://doi.org/10.1093/jb/mvg099
  24. Michell, B. J., Chen, Z., Tiganis, T., Stapleton, D., Katsis, F., Power, D. A., Sim, A. T. and Kemp, B. E. (2001) Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J. Biol. Chem. 276, 17625-17628. https://doi.org/10.1074/jbc.C100122200
  25. Park, J. H., Kim, W. S., Kim, J. Y., Park, M. H., Nam, J. H., Yun, C. W., Kwon, Y. G. and Jo, I. (2011) Chk1 and Hsp90 cooperatively regulate phosphorylation of endothelial nitric oxide synthase at serine 1179. Free Radic. Biol. Med. 51, 2217-2226.
  26. Park, J. H., Park, M., Byun, C. J. and Jo, I. (2012) c-Jun N-terminal kinase 2 phosphorylates endothelial nitric oxide synthase at serine 116 and regulates nitric oxide production. Biochem. Biophys. Res. Commun. 417, 340-345. https://doi.org/10.1016/j.bbrc.2011.11.112
  27. Park, J. H., Sung, H. Y., Lee, J. Y., Kim, H. J., Ahn, J. H. and Jo, I. (2013) B56alpha subunit of protein phosphatase 2A mediates retinoic acid-induced decreases in phosphorylation of endothelial nitric oxide synthase at serine 1179 and nitric oxide production in bovine aortic endothelial cells. Biochem. Biophys. Res. Commun. 430, 476-481. https://doi.org/10.1016/j.bbrc.2012.12.011
  28. Park, J. S., Seo, J., Kim, Y. O., Lee, H. S. and Jo, I. (2009) Coordinated regulation of angiopoietin-1 and vascular endothelial growth factor by arsenite in human brain microvascular pericytes: implications of arsenite-induced vascular dysfunction. Toxicology 264, 26-31. https://doi.org/10.1016/j.tox.2009.07.008
  29. Pi, J., Kumagai, Y., Sun, G., Yamauchi, H., Yoshida, T., Iso, H., Endo, A., Yu, L., Yuki, K., Miyauchi, T. and Shimojo, N. (2000) Decreased serum concentrations of nitric oxide metabolites among Chinese in an endemic area of chronic arsenic poisoning in inner Mongolia. Free Radic. Biol. Med. 28, 1137-1142. https://doi.org/10.1016/S0891-5849(00)00209-4
  30. Rafikov, R., Fonseca, F. V., Kumar, S., Pardo, D., Darragh, C., Elms, S., Fulton, D. and Black, S. M. (2011) eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. J. Endocrinol. 210, 271-284. https://doi.org/10.1530/JOE-11-0083
  31. Stea, F., Bianchi, F., Cori, L. and Sicari, R. (2014) Cardiovascular effects of arsenic: clinical and epidemiological findings. Environ. Sci. Pollut. Res. Int. 21, 244-251. https://doi.org/10.1007/s11356-013-2113-z
  32. Tapio, S., Danescu-Mayer, J., Asmuss, M., Posch, A., Gomolka, M. and Hornhardt, S. (2005) Combined effects of gamma radiation and arsenite on the proteome of human TK6 lymphoblastoid cells. Mutat. Res. 581, 141-152. https://doi.org/10.1016/j.mrgentox.2004.11.016
  33. Thomas, S. R., Chen, K. and Keaney, J. F., Jr. (2002) Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway. J. Biol. Chem. 277, 6017-6024. https://doi.org/10.1074/jbc.M109107200
  34. Tsou, T. C., Tsai, F. Y., Hsieh, Y. W., Li, L. A., Yeh, S. C. and Chang, L. W. (2005) Arsenite induces endothelial cytotoxicity by down-regulation of vascular endothelial nitric oxide synthase. Toxicol. Appl. Pharmacol. 208, 277-284. https://doi.org/10.1016/j.taap.2005.03.001
  35. Watts, V. L., Motley, E. D. (2009) Role of protease-activated receptor-1 in endothelial nitric oxide synthase-Thr495 phosphorylation. Exp. Biol. Med. (Maywood) 234, 132-139. https://doi.org/10.3181/0807-RM-233

Cited by

  1. Benzo[b]tryptanthrin Inhibits MDR1, Topoisomerase Activity, and Reverses Adriamycin Resistance in Breast Cancer Cells vol.10, pp.5, 2015, https://doi.org/10.1002/cmdc.201500068
  2. Citron Rho-interacting kinase mediates arsenite-induced decrease in endothelial nitric oxide synthase activity by increasing phosphorylation at threonine 497: Mechanism underlying arsenite-induced vascular dysfunction vol.90, 2016, https://doi.org/10.1016/j.freeradbiomed.2015.11.020
  3. The Green Tea Component (-)-Epigallocatechin-3-Gallate Sensitizes Primary Endothelial Cells to Arsenite-Induced Apoptosis by Decreasing c-Jun N-Terminal Kinase-Mediated Catalase Activity vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0138590
  4. Design, synthesis, topoisomerase I & II inhibitory activity, antiproliferative activity, and structure–activity relationship study of pyrazoline derivatives: An ATP-competitive human topoisomerase IIα catalytic inhibitor vol.24, pp.8, 2016, https://doi.org/10.1016/j.bmc.2016.03.017
  5. Arsenic, Reactive Oxygen, and Endothelial Dysfunction vol.353, pp.3, 2014, https://doi.org/10.1124/jpet.115.223289
  6. LC-MS analysis of Myrica rubra extract and its hypotensive effects via the inhibition of GLUT 1 and activation of the NO/Akt/eNOS signaling pathway vol.10, pp.9, 2020, https://doi.org/10.1039/c9ra05895h
  7. Endothelial nitric oxide synthase activation is required for heparin receptor effects on vascular smooth muscle cells vol.318, pp.3, 2014, https://doi.org/10.1152/ajpcell.00284.2018