References
- Agrawal, M., Bhaskar, A. S. and Rao, P. V. (2014) Involvement of mitogen-activated protein kinase pathway in T-2 toxin-induced cell cycle alteration and apoptosis in human neuroblastoma cells. Mol. Neurobiol. Aug 2. [Epub ahead of print]
- Bost, F., McKay, R., Dean, N. and Mercola, D. (1997) The JUN kinase/stress-activated protein kinase pathway is required for epidermal growth factor stimulation of growth of human A549 lung carcinoma cells. J. Biol. Chem. 272, 33422-33429. https://doi.org/10.1074/jbc.272.52.33422
- Chang, X., Lu, W., Dou, T., Wang, X., Lou, D., Sun, X. and Zhou, Z. (2013) Paraquat inhibits cell viability via enhanced oxidative stress and apoptosis in human neural progenitor cells. Chem. Biol. Interact. 206, 248-255. https://doi.org/10.1016/j.cbi.2013.09.010
- Craig, E. A., Stevens, M. V., Vaillancourt, R. R. and Camenisch, T. D. (2008) MAP3Ks as central regulators of cell fate during development. Dev. Dyn. 237, 3102-3114. https://doi.org/10.1002/dvdy.21750
- Darling, N. J. and Cook, S. J. (2014) The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. Biochim. Biophys. Acta 1843, 2150-2163. https://doi.org/10.1016/j.bbamcr.2014.01.009
- Deschenes-Simard, X., Kottakis, F., Meloche, S. and Ferbeyre, G. (2014) ERKs in cancer: friends or foes? Cancer Res. 74, 412-419. https://doi.org/10.1158/0008-5472.CAN-13-2381
- Ding, H. D., Zhang, X. H., Xu, S. C., Sun, L. L., Jiang, M. Y., Zhang, A. Y. and Jin, Y. G. (2009) Induction of protection against paraquat-induced oxidative damage by abscisic acid in maize leaves is mediated through mitogen-activated protein kinase. J. Integr. Plant Biol. 51, 961-972. https://doi.org/10.1111/j.1744-7909.2009.00868.x
- Esmaeili, M. A., Farimani, M. M. and Kiaei, M. (2014) Anticancer effect of calycopterin via PI3K/Akt and MAPK signaling pathways, ROSmediated pathway and mitochondrial dysfunction in hepatoblastoma cancer (HepG2) cells. Mol. Cell. Biochem. 397, 17-31 https://doi.org/10.1007/s11010-014-2166-4
- Fei, Q. and Ethell, D. W. (2008) Maneb potentiates paraquat neurotoxicity by inducing key Bcl-2 family members. J. Neurochem. 105, 2091-2097. https://doi.org/10.1111/j.1471-4159.2008.05293.x
- Fei, Q., McCormack, A. L., Di Monte, D. A. and Ethell, D. W. (2008) Paraquat neurotoxicity is mediated by a Bak-dependent mechanism. J. Biol. Chem. 283, 3357-3364. https://doi.org/10.1074/jbc.M708451200
- Giordano, S., Darley-Usmar, V. and Zhang, J. (2014) Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol. 2, 82-90. https://doi.org/10.1016/j.redox.2013.12.013
- Gold, M. R. (2008) B cell development: important work for ERK. Immunity 28, 488-490. https://doi.org/10.1016/j.immuni.2008.03.008
- Haberzettl, P. and Hill, B. G. (2013) Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response. Redox Biol. 1, 56-64. https://doi.org/10.1016/j.redox.2012.10.003
- Han, J., Zhang, Z., Yang, S., Wang, J., Yang, X. and Tan, D. (2014) Betanin attenuates paraquat-induced liver toxicity through a mitochondrial pathway. Food Chem. Toxicol. 70, 100-106. https://doi.org/10.1016/j.fct.2014.04.038
- Hong, G. L., Liu, J. M., Zhao, G. J., Wang, L., Liang, G., Wu, B., Li, M. F., Qiu, Q. M. and Lu, Z. Q. (2013) The reversal of paraquatinduced mitochondria-mediated apoptosis by cycloartenyl ferulate, the important role of Nrf2 pathway. Exp. Cell Res. 319, 2845-2855. https://doi.org/10.1016/j.yexcr.2013.08.005
- Huttemann, M., Pecina, P., Rainbolt, M., Sanderson, T. H., Kagan, V. E., Samavati, L., Doan, J. W. and Lee, I. (2011) The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion 11, 369-381. https://doi.org/10.1016/j.mito.2011.01.010
- Kim, D., Koo, J. S. and Lee, S. (2014) Overexpression of reactive oxygen species scavenger enzymes is associated with a good prognosis in triple-negative breast cancer. Oncology 88, 9-17.
- Kim, E. K. and Choi, E. J. (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta 1802, 396-405. https://doi.org/10.1016/j.bbadis.2009.12.009
- Kumar, P., Rao, G. N., Pal, B. B. and Pal, A. (2014) Hyperglycemia-induced oxidative stress induces apoptosis by inhibiting PI3-kinase/ Akt and ERK1/2 MAPK mediated signaling pathway causing downregulation of 8-oxoG-DNA glycosylase levels in glial cells. Int. J. Biochem. Cell Biol. 53, 302-319. https://doi.org/10.1016/j.biocel.2014.05.038
- Landes, T. and Martinou, J. C. (2011) Mitochondrial outer membrane permeabilization during apoptosis: the role of mitochondrial fission. Biochim. Biophys. Acta 1813, 540-545. https://doi.org/10.1016/j.bbamcr.2011.01.021
- Lavrik, I. N. and Krammer, P. H. (2012) Regulation of CD95/Fas signaling at the DISC. Cell Death Differ. 19, 36-41. https://doi.org/10.1038/cdd.2011.155
- Li, J., O, W., Li, W., Jiang, Z. G. and Ghanbari, H. A. (2013) Oxidative stress and neurodegenerative disorders. Int. J. Mol. Sci. 14, 24438-24475. https://doi.org/10.3390/ijms141224438
- Lim, N. R., Thomas, C. J., Silva, L. S., Yeap, Y. Y., Yap, S., Bell, J. R., Delbridge, L. M., Bogoyevitch, M. A., Woodman, O. L., Williams, S. J., May, C. N. and Ng, D. C. (2013) Cardioprotective 3',4'-dihydroxyflavonol attenuation of JNK and p38(MAPK) signalling involves CaMKII inhibition. Biochem. J. 456, 149-161. https://doi.org/10.1042/BJ20121538
- Liu, P., Kong, F., Wang, J., Xu, H., Qi, T. and Meng, J. (2014) Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes. Exp. Cell. Res. Sep 18. pii: S0014-4827 (14)00400-5. doi: 10.1016/j.yexcr.2014.09.011. [Epub ahead of print]
- Mak, S. K., Tewari, D., Tetrud, J. W., Langston, J. W. and Schule, B. (2011) Mitochondrial dysfunction in skin fibroblasts from a Parkinson's disease patient with an alpha-synuclein triplication. J. Parkinsons Dis. 1, 175-183.
- Meierjohann, S. (2014) Oxidative stress in melanocyte senescence and melanoma transformation. Eur. J .Cell Biol. 93, 36-41. https://doi.org/10.1016/j.ejcb.2013.11.005
- Miller, R. L., Sun, G. Y. and Sun, A. Y. (2007) Cytotoxicity of paraquat in microglial cells: Involvement of PKCdelta- and ERK1/2-dependent NADPH oxidase. Brain Res. 1167, 129-139. https://doi.org/10.1016/j.brainres.2007.06.046
- Monian, P. and Jiang, X. (2012) Clearing the final hurdles to mitochondrial apoptosis: regulation post cytochrome C release. Exp. Oncol. 34, 185-191.
- Munshi, A. and Ramesh, R. (2013) Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 4, 401-408. https://doi.org/10.1177/1947601913485414
- Nahirnyj, A., Livne-Bar, I., Guo, X. and Sivak, J. M. (2013) ROS detoxification and proinflammatory cytokines are linked by p38 MAPK signaling in a model of mature astrocyte activation. PLoS One 8, e83049. https://doi.org/10.1371/journal.pone.0083049
- Nikoletopoulou, V., Markaki, M., Palikaras, K. and Tavernarakis, N. (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta 1833, 3448-3459. https://doi.org/10.1016/j.bbamcr.2013.06.001
- Ohmichi, M., Hayakawa, J., Tasaka, K., Kurachi, H. and Murata, Y. (2005) Mechanisms of platinum drug resistance. Trends Pharmacol. Sci. 26, 113-116. https://doi.org/10.1016/j.tips.2005.01.002
- Prakash, J., Yadav, S. K., Chouhan, S. and Singh, S. P. (2013) Neuroprotective role of Withania somnifera root extract in maneb-paraquat induced mouse model of parkinsonism. Neurochem. Res. 38, 972-980. https://doi.org/10.1007/s11064-013-1005-4
- Qin, X., Wu, Q., Lin, L., Sun, A., Liu, S., Li, X., Cao, X., Gao, T., Luo, P., Zhu, X. and Wang, X. (2014) Soluble epoxide hydrolase deficiency or inhibition attenuates MPTP-induced parkinsonism. Mol. Neurobiol. Aug 17. [Epub ahead of print]
- Rincheval, V., Bergeaud, M., Mathieu, L., Leroy, J., Guillaume, A., Mignotte, B., Le Floch, N. and Vayssiere, J. L. (2012) Differential effects of Bcl-2 and caspases on mitochondrial permeabilization during endogenous or exogenous reactive oxygen species-induced cell death: a comparative study of H(2)O(2), paraquat, t-BHP, etoposide and TNF-alpha-induced cell death. Cell Biol.Toxicol. 28, 239-253. https://doi.org/10.1007/s10565-012-9219-9
- Son, Y., Kim, S., Chung, H. T. and Pae, H. O. (2013) Reactive oxygen species in the activation of MAP kinases. Methods Enzymol. 528, 27-48. https://doi.org/10.1016/B978-0-12-405881-1.00002-1
- Tian, F., Dong, L., Zhou, Y., Shao, Y., Li, W., Zhang, H. and Wang, F. (2014a) Rapamycin-Induced apoptosis in HGF-stimulated lens epithelial cells by AKT/mTOR, ERK and JAK2/STAT3 pathways. Int. J. Mol. Sci. 15, 13833-13848. https://doi.org/10.3390/ijms150813833
- Tian, H., Zhang, D., Gao, Z., Li, H., Zhang, B., Zhang, Q., Li, L., Cheng, Q., Pei, D. and Zheng, J. (2014b) MDA-7/IL-24 inhibits Nrf2-mediated antioxidant response through activation of p38 pathway and inhibition of ERK pathway involved in cancer cell apoptosis. Cancer Gene Ther. Sep 19. doi: 10.1038/cgt.2014.45. [Epub ahead of print]
- Tormos, A. M., Talens-Visconti, R., Nebreda, A. R. and Sastre, J. (2013) p38 MAPK: a dual role in hepatocyte proliferation through reactive oxygen species. Free Radic. Res. 47, 905-916. https://doi.org/10.3109/10715762.2013.821200
- Wallace, M. A., Bailey, S., Fukuto, J. M., Valentine, J. S. and Gralla, E. B. (2005) Induction of phenotypes resembling CuZn-superoxide dismutase deletion in wild-type yeast cells: an in vivo assay for the role of superoxide in the toxicity of redox-cycling compounds. Chem. Res. Toxicol. 18, 1279-1286. https://doi.org/10.1021/tx050050n
- Wang, F., Franco, R., Skotak, M., Hu, G. and Chandra, N. (2014a) Mechanical stretch exacerbates the cell death in SH-SY5Y cells exposed to paraquat: mitochondrial dysfunction and oxidative stress. Neurotoxicology 41, 54-63. https://doi.org/10.1016/j.neuro.2014.01.002
- Wang, J., Deng, X., Zhang, F., Chen, D. and Ding, W. (2014b) ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes. Nanoscale Res. Lett. 9, 117. https://doi.org/10.1186/1556-276X-9-117
- Wang, X., Luo, F. and Zhao, H. (2014c) Paraquat-induced reactive oxygen species inhibit neutrophil apoptosis via a p38 MAPK/NFkappaB-IL-6/TNF-alpha positive-feedback circuit. PLoS One 9, e93837. https://doi.org/10.1371/journal.pone.0093837
Cited by
- Paraquat induces extrinsic pathway of apoptosis in A549 cells by induction of DR5 and repression of anti-apoptotic proteins, DDX3 and GSK3 expression vol.42, 2017, https://doi.org/10.1016/j.tiv.2017.04.016
- Identification of apoptosis and macrophage migration events in paraquat-induced oxidative stress using a zebrafish model vol.157, 2016, https://doi.org/10.1016/j.lfs.2016.06.009
- The Neuroprotective Role of Insulin Against MPP+-Induced Parkinson's Disease in Differentiated SH-SY5Y Cells vol.117, pp.4, 2016, https://doi.org/10.1002/jcb.25376
- JNK Inhibitor SP600125 Attenuates Paraquat-Induced Acute Lung Injury: an In Vivo and In Vitro Study vol.40, pp.4, 2017, https://doi.org/10.1007/s10753-017-0575-8
- Heparan Sulfate Induces Necroptosis in Murine Cardiomyocytes: A Medical-In silico Approach Combining In vitro Experiments and Machine Learning vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00393
- Melatonin protects against paraquat-induced damage during in vitro maturation of bovine oocytes pp.07423098, 2018, https://doi.org/10.1111/jpi.12532
- Diepoxybutane-induced apoptosis is mediated through the ERK1/2 pathway vol.37, pp.10, 2018, https://doi.org/10.1177/0960327118755255
- High-Dose Paraquat Induces Human Bronchial 16HBE Cell Death and Aggravates Acute Lung Intoxication in Mice by Regulating Keap1/p65/Nrf2 Signal Pathway pp.1573-2576, 2019, https://doi.org/10.1007/s10753-018-00956-1
- Chlorogenic acid prevents paraquat-induced apoptosis via Sirt1-mediated regulation of redox and mitochondrial function vol.53, pp.6, 2014, https://doi.org/10.1080/10715762.2019.1621308
- Plant Omics: Metabolomics and Network Pharmacology of Liquorice, Indian Ayurvedic Medicine Yashtimadhu vol.24, pp.12, 2014, https://doi.org/10.1089/omi.2020.0156